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Mobile Network needs ML models
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ML Model Training needs FL
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Device Properties Degrade FL Performance
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Filter valuable on-device data to simultaneously improve training
convergence and inference accuracy of FL model



Three Key Challenges
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Theoretical Analysis
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On-Device Data Selection

Lack of Latest Lack of Accurate Simplification
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Cross-Device Data Storage

Overlapped Coordination Problem
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Experiments

» Learning Tasks and Models

Synth etic Datasets Models #Samples #Labels #Devices| n}*e! ]t%ll n m |B
I Classificati Synthetic Dataset [31] LogReg 1,016,442 10 200 5 5% 1le? 5 10
mage Llassitication g, pion-MNIST (32 LeNet 70,000 10 50 5 10% 13 5 5
Activity Recognition HARBOX [33] Customized DNN 34,115 120 5 10% 13 5 5
Traffic Classification Industrial Dataset Customized CNN 37,853 20 30 5 20% 5% 5 10
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Experiments

» Overall Performance

Task |

Model Training Speedup

RS il &N FB  SLD  ODE-Exact ODE-Est FD .
ST  1.0x — 4.87x — 4.08x 9.52% 5.88% 2.67x Time:
IC  1.0x — - = = 1.35% 1.20 1.01x 2.51x speedup
HAR 1.0x - — - = 2.99% 1.55%  4.76X
TC  1.0x 5 = = i [ 251x 250x ___ 3.02x |
Task Inference Accuracy
ST  79.56% | 78.44% 83.28% | 78.56% 82.38% | 87.19% 82.80%  88.14%
IC 7131%| 51.95% 41.45% | 60.43% 69.15%  72.71% 72.70%  71.37% Accuracy:
HAR 67.25% | 48.16% 51.02% | 48.33% 56.24%  73.63% 70.39%  77.54% 6% increase
TC  89.3% | 69.00% 69.3% | 72.19% 72.30% 05 3% 05.30% __ 06.00%
Task Memory Footprint (MB)
RS HL GN  ODE-Est ODE-Simplified
IC | 1.70 1191 1689  18.27 16.92
Memory HAR | 1.92 7.27 1223  13.46 12 38
< 15MB TC | 075 1058 19.65  25.15 14.47
Task Evaluation Time (ms)
Delay IC | 005 111 2L1 228 11.4
HAR | 0.05 036 1.04 1.93 )
Tms TC | 005 103 906  9.69




Robustness Analysis

Number of Local Training Epochs ( )

With the increasing of local training epoch number, ODE achieves hig
her final accuracy improvement

Device Participation Rate

With 10% participation rate, ODE achieves 2.57 x training time speed
up and 6.6% increase on inference accuracy.

On-Device Storage Capacity

ODE has stable performance with different device capacity, and can r
educe up to 50% storage compared with baseline .



Conclusion

 ldentify two practical properties of mobile devices and
demonstrate the enormity

- Theoretically analyze impact of an individual local data
sample on global model

- Design a collaborative data selection framework for FL to
simultaneously improve convergence rate and final
inference accuracy

* Achieve remarkable training speedup and accuracy
improvement on industrial traffic classification task



Thanks for Watching !
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Please refer to our paper for more details !



