

Systems and Infrastructure for Web, Mobile, and WoT

Enabling Real-Time Inference in Online Continual Learning via Device-Cloud Collaboration

Haibo Liu, Chen Gong, Zhenzhe Zheng, Shengzhong Liu, Fan Wu **Shanghai Jiao Tong University**

Introduction

Research Track

- Nowadays, massive data are continuously collected from ubiquitous end devices, and required immediate process to support real-time data analysis applications. Online continual learning (CL) is becoming a mainstream paradigm to learn incrementally from task streams without forgetting previously learned knowledge.
- However, the current online CL primarily focuses on learning performance,

Design of ELITE

• Without the information of task streams on end devices, we utilize multi-task training with abundant cloud-side data resources to pre-train various models for different tasks, and optimize task-model allocation to maximize the diversity of tasks that the pretrained multi-task model involve with;

such as avoiding catastrophic forgetting, neglecting the critical demands of system performance, such as real-time inference. As a result, the performance of real-time inference in online CL degrades significantly due to frequent data distribution variations and time-consuming model adaptation.

Background and Motivation

• To realize on-device model selection, we extract features of data samples as task embeddings, and select the most k suitable multi-task models by calculating domain similarity. After obtaining the k most suitable, ELITE selects the model with highest confidence to realize model inference.

Experimental Results

		EWC++	MIR	LwF	AMS	RECL	ELITE
	\mathcal{A}	0.176 ± 0.063	0.268 ± 0.093	0.275 ± 0.028	0.125 ± 0.021	0.172 ± 0.002	0.413 ± 0.039
CIFAR10	$\mathcal{L}(s)$	2.011 ± 0.488	3.031 ± 0.518	1.496 ± 0.292	1.971 ± 0.034	1.441 ± 0.097	1.127 ± 0.201

ResNet18	42.838MB	6.577s	0.1295s
----------	----------	--------	---------

- The model performance of on-device CL degrades significantly in resourcelimited scenarios. Moreover, the time consumption of model adaptation is up to 55 times of that of model inference, which would result in a long-time model adaptation for the encountered new task.
- Comparing to previous efforts, we prefer to enable real-time inference on resource-constrained end devices by retrieving suitable models from the cloud with model transmission.

Device-Cloud Collaboration

	\mathcal{F}	0.844 ± 0.063	0.736 ± 0.093	0.581 ± 0.030	0.881 ± 0.021	0.791 ± 0.001	0.581 ± 0.039
	${\mathcal A}$	0.176 ± 0.023	0.174 ± 0.029	0.153 ± 0.008	0.059 ± 0.011	0.164 ± 0.011	0.397 ± 0.014
CIFAR100	$\mathcal{L}(s)$	3.334 ± 0.566	6.884 ± 0.108	4.078 ± 0.097	4.241 ± 0.343	1.884 ± 0.199	1.341 ± 0.117
	${\mathcal F}$	0.796 ± 0.028	0.821 ± 0.027	0.848 ± 0.016	0.921 ± 0.015	0.834 ± 0.013	0.587 ± 0.056
	${\mathcal A}$	0.182 ± 0.053	0.176 ± 0.034	0.207 ± 0.027	0.117 ± 0.051	0.196 ± 0.038	0.275 ± 0.028
Tiny-ImageNet	$\mathcal{L}(s)$	1.718 ± 0.225	3.538 ± 0.632	1.589 ± 0.213	3.064 ± 0.567	1.945 ± 0.474	1.034 ± 0.059
	${\mathcal F}$	0.890 ± 0.042	0.881 ± 0.027	0.811 ± 0.012	0.958 ± 0.032	0.827 ± 0.029	0.728 ± 0.018
	${\mathcal A}$	0.157 ± 0.152	0.220 ± 0.136	0.346 ± 0.129	0.136 ± 0.143	0.543 ± 0.130	0.654 ± 0.043
HDMB51	$\mathcal{L}(s)$	3.006 ± 0.777	4.117 ± 0.761	2.482 ± 0.476	6.269 ± 2.253	1.123 ± 0.263	1.032 ± 0.067
	${\mathcal F}$	0.952 ± 0.016	0.771 ± 0.071	0.675 ± 0.019	0.954 ± 0.008	0.563 ± 0.047	0.328 ± 0.013
	A	0.129 ± 0.153	0.392 ± 0.138	0.252 ± 0.135	0.136 ± 0.143	0.412 ± 0.106	0.652 ± 0.075
UCF101	$\mathcal{L}(s)$	2.846 ± 0.431	4.509 ± 1.022	2.519 ± 0.232	6.269 ± 2.253	1.139 ± 0.258	1.033 ± 0.078
	${\mathcal F}$	0.923 ± 0.034	0.483 ± 0.081	0.831 ± 0.020	0.954 ± 0.008	0.565 ± 0.038	0.376 ± 0.066

(a) Initialization

(b) ELITE (c) Enhancement

Device-cloud collaboration may involve the following three stages: (a) Initialization: This stage serves as the preparation for model zoo generation and real-time inference. It involves the clustering of massive data for multitask model training, coupled with the establishment of task streams; (b) ELITE: This is our primary design to realize real-time inference with two components: the cloud-enabled model zoo and on-device real-time inference; (c) Enhancement: To prevent the performance degradation of ELITE, we propose the latency-aware model fine-tuning on end devices, and dynamic model zoo updating in the cloud to adapt to new tasks.

Conclusion

- In this work, we focused on the real-time inference on resource-constraint end devices in online CL, and proposed a new device-cloud collaborative CL framework, namely ELITE, for time-varying task streams.
- To realize real-time model inference, ELITE formed model zoo in the cloud server, and proposed task-oriented on-device model selection on end devices.
- Extensive evaluations demonstrate that ELITE improves 16.3% inference performance and reduces up to 1.98x response latency compared to the-stateof-art solutions.