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l Nowadays, massive data are continuously collected from ubiquitous end
devices, and required immediate process to support real-time data analysis
applications. Online continual learning (CL) is becoming a mainstream
paradigm to learn incrementally from task streams without forgetting previously
learned knowledge.

l However, the current online CL primarily focuses on learning performance,
such as avoiding catastrophic forgetting, neglecting the critical demands of
system performance, such as real-time inference. As a result, the performance
of real-time inference in online CL degrades significantly due to frequent data
distribution variations and time-consuming model adaptation.
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Table 1: The communication latency of model transmission
by using six classical models with di�erent size.

Model Size Training Time Comm Latency
CNN 0.304MB 1.401s 0.0026s
LeNet5 2.181MB 2.021s 0.0043s

SqueezeNet 2.869MB 3.850s 0.0114s
Shu�eNet V2 8.772MB 5.020s 0.0384s
MobileNet V2 13.501MB 5.331s 0.0819s
ResNet18 42.838MB 6.577s 0.1295s

times of that of model inference, which would result in a long-time
model adaptation before conducting the model inference for the
encountered new task. There exist several related works proposed
to realize timely model inference on task streams. In order to con-
duct inference queries at any time, Hyunseo et al. designed a new
memory management scheme and learning rate scheduling strat-
egy to adapt to online blurry task streams [29]. To evaluate the
current CL methods, a new real-time evaluation in online CL has
been proposed to take the delay of model training and the change
in data distribution into account [13]. Although these methods can
perform model inference without any delay, the performance of
real-time inference is subpar due to the reuse of an out-of-date
model, considering the high model retraining cost in CL [2, 40] and
task streams with fast data distribution change and high through-
out. Thus, it is crucial to achieve real-time inference in online CL
while ensuring learning performance guarantees.

2.3 Device-Cloud Collaboration
The new paradigm of device-cloud collaborative learning is emerg-
ing to leverage the advantages of both end devices and the cloud
server [53, 58]. Most of previous e�orts aims to o�oad the com-
putation intensive tasks on end devices to the cloud [35, 36, 61].
However, these methods require uploading a signi�cant amount
of raw data with considerable communication latency. While AMS
[49] and DCCL [59] have tried to unload partial computation to
the cloud to alleviate the computation de�ciency on end devices,
they primarily focus on the optimization of model training and
aggregation, which are not applicable to realize real-time inference.
Comparing to previous e�orts, we prefer to enable real-time infer-
ence on resource-constrained end devices by retrieving suitable
models from the cloud with model transmission. However, it is note-
worthy that device-cloud collaboration may incur communication
latency due to model transmission. As shown in Table 1, we mea-
sure the communication latency of model transmission by using
six classical models with di�erent sizes (i.e., LeNet5, SqueezeNet,
CNN, Shu�eNet V2, MobileNet V2 and ResNet18). We �nd that it
is feasible to realize cloud-enabled on-device CL, as the commu-
nication latency is short comparing with the time cost of model
adaptation. Despite promising, realizing cloud-enabled on-device
CL for real-time inference also poses new challenges. Although
we can resolve the problem of insu�cient computation resources
on end devices by requesting models from the cloud, the separa-
tion between arriving task streams on end devices and machine
learning models in the cloud makes it di�cult to retrieve suitable
models for end devices. Moreover, the mismatch between outdated

Figure 2: The overview of device-cloud collaboration.

models in the cloud and the high-velocity task streams with fre-
quent data distribution variations on end devices undermines the
model performance of real-time inference. Therefore, it is urgent to
realize real-time inference in online CL with e�cient device-cloud
collaboration.

3 Overview of Device-Cloud Collaboration
As shown in Figure 2, to realize real-time inference on resource-
constraint end devices with device-cloud collaboration may involve
the following three stages: (a) Initialization: This stage serves as the
preparation for model zoo generation and real-time inference. It
involves the clustering of massive data for multi-taskmodel training
in the cloud, coupled with the establishment of task streams with
frequent data distribution variations on end devices; (b) ELITE:
This is our primary design to realize real-time inference with two
main components: the cloud-enabled model zoo and on-device
real-time inference. The cloud-enabled multitask model zoo is an
o�ine component that pretrains and stores a collection ofmulti-task
models in the cloud to handle inference requests from end devices.
The on-device real-time model inference is an online component
responsible for task-oriented model selection, aiming to identify
the best-�t models from the model zoo in the cloud instead of
time-consuming model retraining; (c) Enhancement: To prevent
the performance degradation of ELITE when the cloud is unable
to provide e�cient models, we propose the latency-aware model
�ne-tuning on end devices, and dynamic model zoo updating in
the cloud to adapt to new tasks with an accuracy-latency trade-o�.

The process of device-cloud collaboration can be summarized as
follows: ∂ First, we segment the entire dataset in the cloud server
into various data clusters, associate each data cluster with a corre-
sponding skilled model, and then form the model zoo. It is worth to
note that each data cluster can capture the data distribution from
multiple tasks, and thus the corresponding model can also handle
the inference requests from multiple tasks. ∑ When task streams
arrive, end devices need to make a decision whether to use local
models in bu�er or to request suitable models from the cloud. If the
local models on end devices can e�ectively handle the current tasks,
we use these local models to perform real-time inference without
additional operations. ∏ Otherwise, we perform an online model
selection to request several multi-task models from the model zoo,
and the cloud server then transmits the corresponding multi-task
models to end devices for real-time inference. π After completing

l The model performance of on-device CL degrades significantly in resource-
limited scenarios. Moreover, the time consumption of model adaptation is up
to 55 times of that of model inference, which would result in a long-time
model adaptation for the encountered new task.

l Comparing to previous efforts, we prefer to enable real-time inference on
resource-constrained end devices by retrieving suitable models from the
cloud with model transmission.
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Device-cloud collaboration may involve the following three stages:
(a) Initialization: This stage serves as the preparation for model zoo generation
and real-time inference. It involves the clustering of massive data for multi-
task model training, coupled with the establishment of task streams;

(b) ELITE: This is our primary design to realize real-time inference with two
components: the cloud-enabled model zoo and on-device real-time inference;

(c) Enhancement: To prevent the performance degradation of ELITE, we
propose the latency-aware model fine-tuning on end devices, and dynamic
model zoo updating in the cloud to adapt to new tasks.

Feature Extraction

*! *" !# *#…

Soft maxmax < /

Local Model

Top k

Input {"!"}!#$%! Local models {$!}!#$& Confidence Inference {%!"}!#$%!

Feature
Extractor

%

&"
&#!

&#"

&##

1' {1(}()!* K-Nearest Neighbors

……Data 
Samples

Model
Zoo ……

l Without the information of task streams on end devices, we utilize multi-task
training with abundant cloud-side data resources to pre-train various models
for different tasks, and optimize task-model allocation to maximize the
diversity of tasks that the pretrained multi-task model involve with;

l To realize on-device model selection, we extract features of data samples as
task embeddings, and select the most 𝑘 suitable multi-task models by
calculating domain similarity. After obtaining the 𝑘 most suitable, ELITE
selects the model with highest confidence to realize model inference.
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Table 3: The performance comparison of di�erent CL methods on �ve di�erent datasets.

EWC++ MIR LwF ER AGEM GDumb AMS RECL ELITE

CIFAR10
A 0.176 ± 0.063 0.268 ± 0.093 0.275 ± 0.028 0.371 ± 0.030 0.130 ± 0.016 0.277 ± 0.004 0.125 ± 0.021 0.172 ± 0.002 0.413 ± 0.039

L(B) 2.011 ± 0.488 3.031 ± 0.518 1.496 ± 0.292 2.589 ± 0.220 2.576 ± 0.138 3.268 ± 0.291 1.971 ± 0.034 1.441 ± 0.097 1.127 ± 0.201
F 0.844 ± 0.063 0.736 ± 0.093 0.581± 0.030 0.851± 0.016 0.742 ± 0.028 0.778± 0.004 0.881 ± 0.021 0.791 ± 0.001 0.581 ±0.039

CIFAR100
A 0.176 ± 0.023 0.174 ± 0.029 0.153 ± 0.008 0.197 ± 0.029 0.178 ± 0.023 0.051 ± 0.006 0.059 ± 0.011 0.164 ± 0.011 0.397 ± 0.014

L(B) 3.334 ± 0.566 6.884 ± 0.108 4.078 ± 0.097 5.367 ± 0.492 7.033 ± 0.138 7.207 ± 0.034 4.241 ± 0.343 1.884 ± 0.199 1.341 ± 0.117
F 0.796 ±0.028 0.821 ±0.027 0.848 ±0.016 0.795± 0.032 0.954± 0.039 0.792 ±0.026 0.921 ±0.015 0.834 ±0.013 0.587 ±0.056

Tiny-ImageNet
A 0.182 ± 0.053 0.176 ± 0.034 0.207 ± 0.027 0.175 ± 0.049 0.188 ± 0.060 0.101 ± 0.047 0.117 ± 0.051 0.196 ± 0.038 0.275 ± 0.028

L(B) 1.718 ± 0.225 3.538 ± 0.632 1.589 ± 0.213 3.764 ± 0.838 2.861 ± 0.562 6.074 ± 0.487 3.064 ± 0.567 1.945 ± 0.474 1.034 ± 0.059
F 0.890± 0.042 0.881± 0.027 0.811 ±0.012 0.861± 0.034 0.846± 0.044 0.895± 0.012 0.958 ±0.032 0.827± 0.029 0.728 ±0.018

HDMB51
A 0.157 ± 0.152 0.220 ± 0.136 0.346 ± 0.129 0.362 ± 0.129 0.148 ± 0.146 0.192 ± 0.153 0.136 ± 0.143 0.543 ± 0.130 0.654 ± 0.043

L(B) 3.006 ± 0.777 4.117 ± 0.761 2.482 ± 0.476 3.278 ± 0.723 3.694 ± 0.419 2.884 ± 0.327 6.269 ± 2.253 1.123 ± 0.263 1.032 ± 0.067
F 0.952± 0.016 0.771± 0.071 0.675 ±0.019 0.556 ±0.016 0.952± 0.017 0.965 ±0.044 0.954 ±0.008 0.563 ±0.047 0.328± 0.013

UCF101
A 0.129 ± 0.153 0.392 ± 0.138 0.252 ± 0.135 0.483 ± 0.126 0.131 ± 0.149 0.188 ± 0.158 0.136 ± 0.143 0.412 ± 0.106 0.652 ± 0.075

L(B) 2.846 ± 0.431 4.509 ± 1.022 2.519 ± 0.232 3.412 ± 0.728 3.593 ± 0.955 2.994 ± 0.593 6.269 ± 2.253 1.139 ± 0.258 1.033 ± 0.078
F 0.923 ±0.034 0.483± 0.081 0.831 ±0.020 0.424± 0.050 0.921 ±0.034 0.989 ±0.050 0.954 ±0.008 0.565± 0.038 0.376± 0.066

Figure 5: The performance comparison of di�erent CL methods with �ve di�erent models.

RTX 3090. The communication interaction between Jetson Nano
and the cloud server is facilitated through wi� routers.

6.2 Overall Performance
Table 3 analyzes average accuracy, response latency, and forgetting
for CL methods across �ve di�erent datasets. ELITE consistently
shows the highest inference performance in image classi�cation
tasks, though accuracy and forgetting rate decline with increasing
data complexity, especially for Tiny-ImageNet. Response latency is
a�ected by both dataset complexity and model adaptation strategy.
In video analytics tasks, ELITE maintains around 60% accuracy,
bene�ting from fewer classes and frame similarity. ELITE outper-
forms other methods in accuracy, latency, and forgetting across all
datasets, demonstrating its reliability.

To validate the stability of the experimental results, we con-
ducted ablation studies on �ve di�erent models. Figure 5 shows the

analysis of average accuracy, response latency, and forgetting rate.
While LeNet5 demonstrates the highest accuracy for ELITE among
CL methods, its overall performance is low due to its limited ca-
pacity. Shu�eNet V2, SqueezeNet, and MobileNet V2 show similar
inference performance, with approximately 7% improvement over
LeNet5. ResNet18 exhibits the highest inference performance due
to its larger size. ELITE consistently outperforms other CL methods
in average performance and response latency. Notably, average ac-
curacy improves with increasing model complexity, while latency
remains stable, as ELITE does not require model retraining. In con-
trast, other CL methods show signi�cant �uctuations in accuracy
and latency, further validating the reliability and stability of ELITE.

6.3 Robustness of ELITE
Figure 6(a) illustrates the impact of stream type on average accu-
racy by analyzing both fuzzy-boundary and sharp-boundary task
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6.2 Overall Performance
Table 3 analyzes average accuracy, response latency, and forgetting
for CL methods across �ve di�erent datasets. ELITE consistently
shows the highest inference performance in image classi�cation
tasks, though accuracy and forgetting rate decline with increasing
data complexity, especially for Tiny-ImageNet. Response latency is
a�ected by both dataset complexity and model adaptation strategy.
In video analytics tasks, ELITE maintains around 60% accuracy,
bene�ting from fewer classes and frame similarity. ELITE outper-
forms other methods in accuracy, latency, and forgetting across all
datasets, demonstrating its reliability.

To validate the stability of the experimental results, we con-
ducted ablation studies on �ve di�erent models. Figure 5 shows the

analysis of average accuracy, response latency, and forgetting rate.
While LeNet5 demonstrates the highest accuracy for ELITE among
CL methods, its overall performance is low due to its limited ca-
pacity. Shu�eNet V2, SqueezeNet, and MobileNet V2 show similar
inference performance, with approximately 7% improvement over
LeNet5. ResNet18 exhibits the highest inference performance due
to its larger size. ELITE consistently outperforms other CL methods
in average performance and response latency. Notably, average ac-
curacy improves with increasing model complexity, while latency
remains stable, as ELITE does not require model retraining. In con-
trast, other CL methods show signi�cant �uctuations in accuracy
and latency, further validating the reliability and stability of ELITE.

6.3 Robustness of ELITE
Figure 6(a) illustrates the impact of stream type on average accu-
racy by analyzing both fuzzy-boundary and sharp-boundary task

l In this work, we focused on the real-time inference on resource-constraint end
devices in online CL, and proposed a new device-cloud collaborative CL
framework, namely ELITE, for time-varying task streams.

l To realize real-time model inference, ELITE formed model zoo in the cloud
server, and proposed task-oriented on-device model selection on end devices.

l Extensive evaluations demonstrate that ELITE improves 16.3% inference
performance and reduces up to 1.98x response latency compared to the-state-
of-art solutions.
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