To Store or Not? Online Data Selection for Federated Learning with Limited Storage

Chen Gong¹, Zhenzhe Zheng¹, Yunfeng Shao², Bingshuai Li², Fan Wu¹, Guihai Chen¹

Shanghai Jiao Tong University¹

Huawei Noah' s Ark Lab²

Mobile Network needs ML models

ML Model Training needs FL

Device Properties Degrade FL Performance

Filter valuable on-device data to simultaneously improve training convergence and inference accuracy of FL model

Three Key Challenges

Constrained Resource Computation Cost **Evaluation** Delay <u>ج</u>... <u>....</u> **6** Memory RAM Footprint

6 Theoretical Analysis

On-Device Data Selection

Cross-Device Data Storage

Policy

8

Problem Formulation

- **Efficient Data Selection**
- **Redundant Label** Assignment

Coordinated

Stored

Data

- **Limited Storage** ullet
- Unbiased global data

distribution

$$\begin{split} \max_{D} & \sum_{c \in C} \sum_{y \in Y} D_{c,y} \cdot V_{c,y} = \parallel DV \parallel_{1}, \\ \text{s.t.} & \parallel D_{y}^{\mathrm{T}} \parallel_{0} \geqslant n_{y}^{\mathrm{label}}, & \forall y \in Y, \\ & \parallel D_{c} \parallel_{0} \leqslant n_{c}^{\mathrm{client}}, & \forall c \in C, \\ & \parallel D_{c} \parallel_{1} = |B_{c}|, & \forall c \in C, \\ & \frac{\sum_{c \in C} D_{c,y}}{\parallel B \parallel_{1}} = \frac{\sum_{c \in C} V_{c,y}}{\parallel V \parallel_{1}}, & \forall y \in Y. \end{split}$$

Experiments

Learning Tasks and Models

Overall Performance

Task		1.100							
	RS	HL	GN	FB	SLD	ODE-Exact	ODE-Est	FD	
ST	1.0×	1.778	4.87×	0.00	4.08×	9.52×	5.88×	2.67×	lime:
IC	$1.0 \times$	· <u> </u>	2 <u>-</u>	21 <u></u>	—	$1.35 \times$	$1.20 \times$	$1.01 \times$	2.51× speedup
HAR	$1.0 \times$. —	8 	800	—	$2.22 \times$	1.55×	4.76×	
TC	$1.0 \times$	17 <u>1-</u> 37	<u> </u>	31 <u></u> -	<u></u>	2.51×	2.50×	3.92×	
Task		2							
ST	79.56%	78.44%	83.28%	78.56%	82.38%	87.12%	82.80%	88.14%	A = = = = = =
IC	71.31%	51.95%	41.45%	60.43%	69.15%	72.71%	72.70%	71.37%	Accuracy:
HAR	67.25%	48.16%	51.02%	48.33%	56.24%	73.63%	70.39%	77.54%	6% increase
TC	89.3%	69.00%	69.3%	72.19%	72.30%	95.3%	95.30%	96.00%	

	T 1	Memory Footprint (MB)							
	Task	RS	HL	GN	ODE-Est	ODE-Simplified			
Momory	IC	1.70	11.91	16.89	18.27	16.92			
wiemory	HAR	1.92	7.27	12.23	13.46	12 38			
< 15MB	TC	0.75	10.58	19.65	25.15	14.47			
	Task	Evaluation Time (ms)							
Delay	IC	0.05	11.1	21.1	22.8	11.4			
1	HAR	0.05	0.36	1.04	1.93	0.53			
ims	TC	0.05	1.03	9.06	9.69	1.23			

Number of Local Training Epochs (m)

With the increasing of local training epoch number, ODE achieves hig her final accuracy improvement

Device Participation Rate

With 10% participation rate, ODE achieves 2.57× training time speed up and 6.6% increase on inference accuracy.

On-Device Storage Capacity

ODE has stable performance with different device capacity, and can r educe up to 50% storage compared with baseline .

¹² Conclusion

- Identify two practical properties of mobile devices and demonstrate the enormity
- Theoretically analyze impact of an individual local data sample on global model
- Design a collaborative data selection framework for FL to simultaneously improve convergence rate and final inference accuracy
- Achieve remarkable training speedup and accuracy improvement on industrial traffic classification task

Thanks for Watching ! Q & A

Please refer to our paper for more details !