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ABSTRACT
Machine learning models have been deployed in mobile networks

to deal with massive data from different layers to enable automated

network management and intelligence on devices. To overcome

high communication cost and severe privacy concerns of centralized

machine learning, federated learning (FL) has been proposed to

achieve distributed machine learning among networked devices.

While the computation and communication limitation has been

widely studied, the impact of on-device storage on the performance

of FL is still not explored. Without an effective data selection policy

to filter the massive streaming data on devices, classical FL can

suffer from much longer model training time (4×) and significant

inference accuracy reduction (7%), observed in our experiments.

In this work, we take the first step to consider the online data

selection for FL with limited on-device storage. We first define a

new data valuation metric for data evaluation and selection in FL

with theoretical guarantees for speeding up model convergence and

enhancing final model accuracy, simultaneously. We further design

ODE, a framework of Online Data sElection for FL, to coordinate

networked devices to store valuable data samples. Experimental

results on one industrial dataset and three public datasets show the

remarkable advantages of ODE over the state-of-the-art approaches.

Particularly, on the industrial dataset, ODE achieves as high as 2.5×
speedup of training time and 6% increase in inference accuracy, and

is robust to various factors in practical environments.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer methodologies→ Machine learning.
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1 INTRODUCTION
The next-generation mobile computing systems require effective

and efficient management of mobile networks and devices in vari-

ous aspects, including resource provisioning [7, 23], security and

intrusion detection [8], quality of service guarantee [17], and per-

formance monitoring [35]. Analyzing and controlling such an in-

creasingly complex mobile network with traditional human-in-

the-loop approaches [53] will not be possible, due to low-latency

requirement [62], massive real-time data and complicated corre-

lation among data [2]. For example, in network traffic analysis, a

fundamental task in mobile networks, routers can receive/send as

many as 5000 packets (≈ 5MB) per second. It is impractical to man-

ually analyze such a huge quantity of high-dimensional data within

milliseconds. Thus, machine learning models have been widely

applied to discover pattern behind high-dimensional networked

data, enable data-driven network control, and fully automate the

mobile network operation [5, 6, 55].

Despite that ML model overcomes the limitations of human-in-

the-loop approaches, its good performance highly relies on the

huge amount of high quality data for model training [18], which

is hard to obtain in mobile networks as the data is resided on het-

erogeneous devices in a distributed manner. On the one hand, an

on-device ML model trained locally with limited data and computa-

tional resources is unlikely to achieve desirable inference accuracy

and generalization ability [78]. On the other hand, directly transmit-

ting data from distributed networked devices to a cloud server for

centralized learning (CL) will bring prohibitively high communica-

tion cost and severe privacy concerns [38, 47]. Recently, federated

learning (FL) [46] emerges as a distributed privacy-preserving ML

paradigm to resolve the above concerns, which allows networked

devices to upload local model updates instead of raw data and a

central server to aggregate these local models into a global model.

Motivation and New Problem. For applying FL to mobile net-

works, we identify two unique properties of networked devices:

limited on-device storage and streaming networked data, which have
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(a) Convergence Time (b) Inference Accuracy

Figure 1: To investigate the impact of on-device storage on FL
model training, we conduct experiments on an industrial traf-
fic classification dataset with 30mobile devices and 35, 000+
data samples under different storage capacities.

not been fully considered in FL literature. (1) Limited on-device stor-
age: due to the hardware constraints, mobile devices have restricted

storage volume for each mobile application and service, and can

reserve only a small space to store training data samples for ML

without compromising the quality of other services. For example,

most smart home routers have only 9-32MB storage [64] and thus

only tens of training data samples can be stored. (2) Streaming net-
worked data: data samples are continuously generated/received by

mobile devices in a streaming manner, and we need to make online

decisions on whether to store each generated data sample.

Without a carefully designed data selection policy to maintain

the data samples in storage, the empirical distribution of stored

data could deviate from the true data distribution and also contain

low-quality data, which further complicates the notorious prob-

lem of not independent and identically distributed (Non-IID) data

distribution in FL [31, 43]. Specifically, the naive random selec-

tion policy significantly degrades the performance of classic FL

algorithms in both model training and inference, with more than

4× longer training time and 7% accuracy reduction, observed in

our experiments with an industrial network traffic classification

dataset shown in Figure 1 (detailed discussion is shown in Appen-

dix C.4). This is unacceptable in modern mobile networks, because

the longer training time reduces the timeliness and effectiveness

of ML models in dynamic environments, and accuracy reduction

results in failure to guarantee the quality of service [17] and incurs

extra operational expenses [3] as well as security breaches [4, 63].

Therefore, a fundamental problem when applying FL to mobile net-

work is how to filter valuable data samples from on-device streaming
data to simultaneously accelerate training convergence and enhance
inference accuracy of the final global model?

Design Challenges. The design of such an online data selection

framework for FL involves three key challenges:

(1) There is still no theoretical understanding about the impact of local
on-device data on the training speedup and accuracy enhancement of
global model in FL. Lacking information about raw data and local

models of the other devices, it is challenging for one device to figure

out the impact of its local data sample on the performance of the

global model. Furthermore, the sample-level correlation between

convergence rate and model accuracy is still not explored in FL,

and it is non-trivial to simultaneously improve these two aspects

through one unified data valuation metric.

(2) The lack of temporal and spatial information complicates the on-
line data selection in FL. For streaming data, we could not access the

data samples coming from the future or discarded in the past. Lack-

ing such temporal information, one device is not able to leverage the
complete statistical information (e.g., unbiased local data distribu-

tion) for accurate data quality evaluation, such as outliers and noise

detection [39, 60]. Additionally, due to the distributed paradigm in

FL, one device cannot conduct effective data selection without the

knowledge of other devices’ stored data and local models, which

can be called as spatial information. This is because the valuable
data samples selected locally could be overlapped with each other

and the local valuable data may not be the global valuable one.

(3) The on-device data selection needs to be low computation-and-
memory-cost due to the conflict of limited hardware resources and
requirement on quality of user experience. As the additional time

delay and memory costs introduced by online data selection pro-

cess would degrade the performance of mobile network and user

experience, the real-time data samples must be evaluated in a com-

putation and memory efficient way. However, increasingly complex

ML models lead to high computation complexity as well as large

memory footprint for storing intermediate model outputs during

the data selection process.

Limitations of Related Works. The prior works on data eval-

uation and selection in ML failed to solve the above challenges.

(1) The data selectionmethods in CL, such as leave-one-out test [16],

Data Shapley [22] and Importance Sampling [47, 79], are not ap-

propriate for FL due to the first challenge: they could only measure

the value of each data sample corresponding to the local model

training process, instead of the global model in FL.

(2) The prior works on data selection in FL did not consider the two

new properties of FL devices. Mercury [78], FedBalancer [60] and

the work from Li et al. [39] adopted importance sampling frame-

work [79] to select the data samples with high loss or gradient

norm but failed to solve the second challenge: these methods all

need to inspect the whole dataset for normalized sampling weight

computation as well as noise and outliers removal [28, 39].

Our Solutions. To solve the above challenges, we design ODE,
an online data selection framework that coordinates networked

devices to select and store valuable data samples locally and collab-

oratively in FL, with theoretical guarantees for accelerating model

convergence and enhancing inference accuracy, simultaneously.

In ODE, we first theoretically analyze the impact of an individual

local data sample on the convergence rate and final accuracy of

the global model in FL. We discover a common dominant term in

these two analytical expressions, which can thus be regarded as

a reasonable data selection metric in FL. Second, considering the

lack of temporal and spatial information, we propose an efficient

method for clients to approximate this data selection metric by

maintaining a local gradient estimator on each device and a global

one on the server. Third, to overcome the potential overlap of the

stored data caused by distributed data selection, we further propose

a strategy for the server to coordinate each device to store high

valuable data from different data distribution regions. Finally, to

achieve the computation and memory efficiency, we propose a

simplified version of ODE, which replaces the full model gradient

with partial model gradient to concurrently reduce the computation

and memory costs of the data evaluation process.

System Implementation and Experimental Results. We

evaluated ODE on three public tasks: synthetic task (ST) [10], Image
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Classification (IC) [73] and Human Activity Recognition (HAR) [40,

54], as well as one industrial mobile traffic classification dataset

(TC) collected from our 30-days deployment on 30ONTs in practice,

consisting of 560, 000+ packets from 250 mobile applications. We

compare ODE against three categories of data selection baselines:

random sampling [65], data selection for CL [39, 60, 78] and data

selection for FL [39, 60]. The experimental results show that ODE
outperforms all these baselines, achieving as high as 9.52× speedup
of model training and 7.56% increase in final model accuracy on

ST, 1.35× and 1.4% on IC, 2.22× and 6.38% on HAR, 2.5× and 6% on

TC, with low extra time delay and memory costs. We also conduct

detailed experiments to analyze the robustness of ODE to various

environment factors and its component-wise effect.

Summary of Contributions. (1) To the best of our knowledge,

we are the first to identify two new properties of applying FL in

mobile networks: limited on-device storage and streaming networked
data, and demonstrate its enormity on the effectiveness and effi-

ciency of model training in FL. (2) We provide analytical formulas

on the impact of an individual local data sample on the convergence

rate and the final inference accuracy of the global model, based on

which we propose a new data valuation metric for data selection in

FL with theoretical guarantees for accelerating model convergence

and improving inference accuracy, simultaneously. Further, we pro-

pose ODE, an online data selection framework for FL, to realize the

on-device data selection and cross-device collaborative data stor-

age. (3) We conduct extensive experiments on three public datasets

and one industrial traffic classification dataset to demonstrate the

remarkable advantages of ODE against existing methods.

2 PRELIMINARIES
In this section, we present the learning model and training process

of FL. We consider the synchronous FL framework [31, 44, 46],

where a server coordinates a set of mobile devices/clients 𝐶 to

conduct distributed model training. Each client 𝑐 ∈𝐶 generates data

samples in a streaming manner with a velocity 𝑣𝑐 . We use 𝑃𝑐 to

denote the client 𝑐’s underlying distribution of her local data, and 𝑃𝑐
to represent the empirical distribution of the data samples 𝐵𝑐 stored

in her local storage. The goal of FL is to train a global model𝑤 from

the locally stored data 𝑃 =
⋃

𝑐∈𝐶 𝑃𝑐 with good performance with

respect to the underlying unbiased data distribution 𝑃 =
⋃

𝑐∈𝐶 𝑃𝑐 :

min

𝑤∈R𝑛
𝐹 (𝑤) =

∑︁
𝑐∈𝐶

𝜁𝑐 · 𝐹𝑐 (𝑤),

where 𝜁𝑐 =
𝑣𝑐∑

𝑐′∈𝐶 𝑣𝑐′
denotes the normalized weight of each client,𝑛

is the dimension ofmodel parameters, 𝐹𝑐 (𝑤) = E(𝑥,𝑦)∼𝑃𝑐 [𝑙 (𝑤, 𝑥,𝑦)]
is the expected loss of the model𝑤 over the true data distribution

of client 𝑐 . We also use 𝐹𝑐 (𝑤) = 1

|𝐵𝑐 |
∑
𝑥,𝑦∈𝐵𝑐

𝑙 (𝑤, 𝑥,𝑦) to denote

the empirical loss of model over the data samples stored by client 𝑐 .

In this work, we investigate the impacts of each client’s limited

storage on FL, and consider the widely adopted algorithm Fed-

Avg [46] for easy illustration
1
. Under the synchronous FL frame-

work, the global model is trained by repeating the following two

steps for each communication round 𝑡 from 1 to 𝑇 :

1
Our results for limited on-device storage can be extended to other FL algorithms,

such as FedBoost[25], FedNova[67], FedProx[44].

(1) Local Training: In the round 𝑡 , the server selects a client subset

𝐶𝑡 ⊆ 𝐶 to participate in the training process. Each participating

client 𝑐 ∈𝐶𝑡 downloads the current global model𝑤𝑡−1
fed

(the ending

global model in the last round), and performs model updates with

the locally stored data for𝑚 epochs:

𝑤
𝑡,𝑖
𝑐 ← 𝑤

𝑡,𝑖−1
𝑐 − 𝜂∇𝑤𝐹𝑐 (𝑤𝑡,𝑖−1

𝑐 ), 𝑖 = 1, · · · ,𝑚 (1)

where the starting local model 𝑤
𝑡,0
𝑐 is initialized as 𝑤𝑡−1

fed
, and 𝜂

denotes the learning rate.

(2) Model Aggregation: Each participant client 𝑐 ∈ 𝐶𝑡 uploads

the updated local model𝑤
𝑡,𝑚
𝑐 , and the server aggregates them to

generate a new global model𝑤𝑡
fed

by taking a weighted average:

𝑤𝑡
fed
←

∑︁
𝑐∈𝐶𝑡

𝜁 𝑡𝑐 ·𝑤
𝑡,𝑚
𝑐 , (2)

where 𝜁 𝑡𝑐 =
𝑣𝑐∑

𝑐′ ∈𝐶𝑡
𝑣𝑐′

is the normalized weight of client 𝑐 .

In the scenario of FL with limited on-device storage and stream-

ing data, we have an additional data selection step for clients:

(3) Data Selection: In each round 𝑡 , once receiving a new data

sample, the client has to make an online decision on whether to

store the new sample (in place of an old one if the storage area is

fully occupied) or discard it. The goal of this data selection process

is to select valuable data samples from streaming data for model

training in the coming rounds.

3 DESIGN OF ODE
In this section, we first quantify the impact of a local data sample on

the performance of global model in terms of convergence rate and

inference accuracy. Based on the common dominant term in the two

analytical expressions, we propose a new data valuation metric for

data evaluation and selection in FL (§3.1), and develop a practical

method to estimate this metric with low extra computation and

communication overhead (§3.2). We further design a strategy for

the server to coordinate cross-client data selection process, avoiding

the potential overlapped data selected and stored by clients (§3.3).

Finally, we summarize the detailed procedure of ODE (§3.4).

3.1 Data Valuation Metric
We evaluate the impact of a local data sample on FL from the

perspectives of convergence rate and inference accuracy, which

are two critical aspects for the success of FL. The convergence rate

quantifies the reduction of loss function in each training round, and

determines the communication cost of FL. The inference accuracy

reflects the effectiveness of a FL model on guaranteeing the quality

of service and user experience. For theoretical analysis, we follow

one typical assumption on the FL models, which is widely adopted

in the literature [44, 51, 80].

Assumption 1. (Lipschitz Gradient) For each client 𝑐 ∈ 𝐶 , the
loss function 𝐹𝑐 (𝑤) is 𝐿𝑐 -Lipschitz gradient, i.e., ∥ ∇𝑤𝐹𝑐 (𝑤1) −
∇𝑤𝐹𝑐 (𝑤2) ∥2⩽ 𝐿𝑐 ∥𝑤1 − 𝑤2 ∥2, which implies that the global loss
function 𝐹 (𝑤) is 𝐿-Lipschitz gradient with 𝐿 =

∑
𝑐∈𝐶 𝜁𝑐𝐿𝑐 .

Due to the limitation of space, we provide the proofs of all the

theorems and lemmas in our technical report [24].

Convergence Rate.We provide a lower bound on the reduction

of loss function of global model after model aggregation in each

communication round.
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Theorem 1. (Global Loss Reduction) With Assumption 1, for an
arbitrary set of clients 𝐶𝑡 ⊆𝐶 selected by the server in round 𝑡 , the
reduction of global loss 𝐹 (𝑤) is bounded by:

𝐹 (𝑤𝑡−1
fed
) − 𝐹 (𝑤𝑡

fed
)︸                    ︷︷                    ︸

global loss reduction

⩾
∑︁
𝑐∈𝐶𝑡

𝑚−1∑︁
𝑖=0

∑︁
(𝑥,𝑦) ∈𝐵𝑐

[
− 𝛼𝑐 ∥ ∇𝑤𝑙 (𝑤𝑡,𝑖

𝑐 , 𝑥, 𝑦) ∥2
2︸                     ︷︷                     ︸

term 1

+ 𝛽𝑐 ⟨∇𝑤𝑙 (𝑤𝑡,𝑖
𝑐 , 𝑥, 𝑦), ∇𝑤𝐹 (𝑤𝑡−1

fed
) ⟩︸                                    ︷︷                                    ︸

term 2

]
,

(3)

where 𝛼𝑐 = 𝐿
2𝜁 𝑡𝑐
·
(

𝜂

|𝐵𝑐 |

)
2

and 𝛽𝑐 = 𝜁 𝑡𝑐 ·
(

𝜂

|𝐵𝑐 |

)
.

Due to the different magnitude orders of coefficients 𝛼𝑐 and 𝛽𝑐
2

and also the values of terms 1 and 2, as is shown in Appendix B, we

can focus on the term 2 (projection of the local gradient of a data

sample onto the global gradient) to evaluate a local data sample’s

impact on the convergence rate.

We next briefly describe how to evaluate data samples based on

the term 2. The local model parameter𝑤
𝑡,𝑖
𝑐 in term 2 is computed

from (1), where the gradient ∇𝑤𝐹𝑐 (𝑤𝑡,𝑖−1
𝑐 ) depends on the “coop-

eration” of all the stored data samples. Thus, we can formulate the

computation of term 2 as a cooperative game [9], where each data

sample represents a player and the utility of the whole dataset is

the value of term 2. Within this cooperative game, we can regard

the individual contribution of each data sample as its value, and

quantify it through leave-one-out [16, 34] or Shapley Value [22, 58].

As these methods require multiple model retraining to compute the

marginal contribution of each data sample, we propose a one-step

look-ahead strategy to approximately evaluate each sample’s value

by only focusing on the first local training epoch (𝑚 = 1).

Inference Accuracy.We can assume that the optimal FL model

can be obtained by gathering all clients’ generated data and con-

ducting CL. Moreover, as the accurate testing dataset and the cor-

responding testing accuracy are hard to obtain in FL, we use the

weight divergence between the models trained through FL and CL

to quantify the accuracy of the FL model in each round 𝑡 . With

𝑡→∞, we can measure the final accuracy of FL model.

Theorem 2. (Model Weight Divergence) With Assumption 1, for
arbitrary set of participating clients𝐶𝑡 , we have the following inequal-
ity for the weight divergence after the 𝑡𝑡ℎ training round between the
models trained through FL and CL.

∥ 𝑤𝑡
fed
− 𝑤𝑚𝑡

cen
∥2⩽(1 + 𝜂𝐿)𝑚 ∥ 𝑤𝑡−1

fed
− 𝑤

𝑚 (𝑡−1)
cen

∥2

+
∑︁
𝑐∈𝐶𝑡

𝜁 𝑡𝑐

[
𝜂

𝑚−1∑︁
𝑖=0

(1 + 𝜂𝐿)𝑚−1−𝑖𝐺𝑐 (𝑤𝑡,𝑖
𝑐 )

]
,

(4)

where 𝐺𝑐 (𝑤) =∥ ∇𝑤𝐹𝑐 (𝑤) − ∇𝑤𝐹 (𝑤) ∥2.
The following lemma further shows the impact of a local data

sample on ∥𝑤𝑡
fed
−𝑤𝑚𝑡

cen
∥2 through 𝐺𝑐 (𝑤𝑡,𝑖

𝑐 ).

Lemma 1. (Gradient Divergence) For an arbitrary client 𝑐 ∈ 𝐶 ,
𝐺𝑐 (𝑤)=∥ ∇𝐹𝑐 (𝑤) − ∇𝐹 (𝑤) ∥2 is bounded by:

𝐺𝑐 (𝑤 )⩽
√√√√√
𝛿 +

∑︁
(𝑥,𝑦) ∈𝐵𝑐

1

|𝐵𝑐 |
( ∥ ∇𝑤𝑙 (𝑤,𝑥, 𝑦) ∥2

2︸                  ︷︷                  ︸
term 1

−2 ⟨∇𝑤𝑙 (𝑤,𝑥, 𝑦), ∇𝑤𝐹 (𝑤 ) ⟩︸                            ︷︷                            ︸
term 2

),

(5)

2 𝛼𝑐
𝛽𝑐
∝ 𝜂

|𝐵𝑐 | ≈ 10
−4

with common learning rate 10
−3

and storage size 10.

where 𝛿 =∥ ∇𝑤𝐹 (𝑤) ∥2
2
is a constant term for all data samples.

Intuitively, due to different coefficients, the twofold projection

(term 2) has larger mean and variance than the gradient magnitude

(term 1) among different data samples, which is also verified in our

experiments in Appendix B. Thus, we can quantify the impact of

a local data sample on 𝐺𝑐 (𝑤) and the inference accuracy mainly

through term 2 in (5), which happens to be the same as the term 2

in the bound of global loss reduction in (3).

Data Valuation. Based on the above analysis, we define a new

data valuation metric in FL, and provide the theoretical understand-

ing as well as intuitive interpretation.

Definition 1. (Data Valuation Metric) In the 𝑡𝑡ℎ round, for a
client 𝑐 ∈𝐶 , the value of a data sample (𝑥,𝑦) is defined as the projection
of its local gradient ∇𝑙 (𝑤, 𝑥,𝑦) onto the global gradient of the current
global model over the unbiased global data distribution:

𝑣 (𝑥,𝑦) def= ⟨∇𝑤𝑙 (𝑤𝑡
fed

, 𝑥,𝑦),∇𝑤𝐹 (𝑤𝑡
fed
)⟩. (6)

Based on this new data valuation metric, once a client receives a

new data sample, she can make an online decision on whether to

store this sample by comparing the data value of the new sample

with those of old samples in storage, which can be easily imple-

mented as a priority queue.

Theoretical Understanding. On the one hand, maximizing the

above data valuation metric of the selected data samples is a one-

step greedy strategy for minimizing the loss of the updated global

model in each training round according to (3), accelerating model

training. On the other hand, this metric also improves the inference

accuracy of the final global model by narrowing the gap between

the models trained through FL and CL, as it reduces the high-weight

term of the dominant part in (4), i.e., (1 + 𝜂𝐿)𝑚−1𝐺𝑐 (𝑤𝑡,0

𝑘
).

Intuitive Interpretation.The proposed data valuationmetric guides

the clients to select the data samples which not only follow their

own local data distribution, but also have similar effect with the

global data distribution. In this way, the personalized information

of local data distribution is preserved and the data heterogeneity

across clients is also reduced, which have been demonstrated to

improve FL performance [11, 67, 74, 77].

3.2 On-Client Data Selection
In practice, it is non-trivial for one client to directly utilize the

above data valuation metric for online data selection due to the

following two problems: (1) lack of the latest global model: due
to the partial participation of clients in FL [29], each client 𝑐 ∈𝐶
does not receive the global FL model𝑤𝑡−1

fed
in the rounds that she

is not selected, and only has the outdated global FL model from

the previous participating round, i.e.,𝑤𝑡𝑐,last−1
fed

; (2) lack of unbiased
global gradient: the accurate global gradient over the unbiased

global data distribution can only be obtained by aggregating all the

clients’ local gradients over their unbiased local data distributions.

This is hard to achieve because only partial clients participate in

each communication round, and the locally stored data distribution

could become biased during the on-client data selection process.

We can consider that problem (1) does not affect the online data

selection process too much as the value of each data sample remains

stable across a few training rounds, which is demonstrated with
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the experiment results in Appendix B, and thus clients can simply

use the old global model for data valuation.

To solve the problem (2), we propose a gradient estimation

method. First, to solve the issue of skew local gradient, we re-

quire each client 𝑐 ∈ 𝐶 to maintain a local gradient estimator 𝑔𝑐 ,

which will be updated whenever the client receives the 𝑛𝑡ℎ new

data sample (𝑥,𝑦) from the last participating round:

𝑔𝑐 ←
𝑛 − 1
𝑛

𝑔𝑐 +
1

𝑛
∇𝑤𝑙 (𝑤

𝑡𝑐,last−1
fed

, 𝑥,𝑦) . (7)

When the client 𝑐 is selected to participate in FL at a certain round

𝑡 , the client uploads the current local gradient estimator 𝑔𝑐 to the

server, and resets the local gradient estimator, i.e., 𝑔𝑐 ← 0, 𝑛 ←
0, because a new global FL model 𝑤𝑡−1

fed
is received. Second, to

solve the problem of skew global gradient due to the partial client

participation, the server also maintains a global gradient estimator

𝑔𝑡 , which is an aggregation of the local gradient estimators, 𝑔𝑡 =∑
𝑐∈𝐶 𝜁𝑐𝑔𝑐 . As it would incur high communication cost to collect

𝑔𝑐 from all the clients, the server only uses 𝑔𝑐 of the participating

clients to update global gradient estimator 𝑔𝑡 in each round 𝑡 :

𝑔𝑡 ← 𝑔𝑡−1 +
∑︁
𝑐∈𝐶𝑡

𝜁𝑐 (𝑔𝑐 − 𝑔𝑡last𝑐 ), (8)

Thus, in each training round 𝑡 , the server needs to distribute both

the current global FL model 𝑤𝑡−1
fed

and the latest global gradient

estimator 𝑔𝑡−1 to each selected client 𝑐 ∈𝐶𝑡 , who will conduct local
model training, and upload both locally updated model𝑤

𝑡,𝑚
𝑐 and

local gradient estimator 𝑔𝑐 back to the server.

Simplified Version. In both of the local gradient estimation

in (7) and data valuation in (6), for a new data sample, we need to

backpropagate the entire model to compute its gradient, which will

introduce high computation cost and memory footprint for storing

intermediate model outputs. To reduce these costs, we only use the

gradients of the last few network layers of ML models instead of

the whole model, as partial model gradient is also able to reflect

the trend of the full gradient, which is also verified in Appendix B.

Privacy Concern. The transmission of local gradient estimators

may disclose the local gradient of each client to some extent, which

can be avoided by adding Guassian noise to each local gradient

estimator before uploading, as in differential privacy [19, 69].

3.3 Cross-Client Data Storage
Since the local data distributions of clients may overlap with each

other, independently conducting data selection process for each

client may lead to distorted global data distribution. One potential

solution is to divide the global data distribution into several regions,

and coordinate each client to store valuable data samples for one

specific distribution region, while the union of all stored data can

still follow the unbiased global data distribution. In this work, we

consider the label of data samples as the dividing criterion
3
. Thus,

before the training process, the server needs to instruct each client

the labels and the corresponding quantity of data samples to store.

Considering the partial client participation and heterogeneous data

distribution among clients, the cross-client coordination strategy

need to satisfy the following four desirable properties:

3
There are some other methods to divide the data distribution, such as K-means [36]

and Hierarchical Clustering [49], and our results are independent on these methods.

(1) Efficient Data Selection: To improve the efficiency of data selec-

tion, the label 𝑦 ∈𝑌 should be assigned to the clients who generate

more data samples with this label, following the intuition that there

is a higher probability to select more valuable data samples from a

larger pool of candidate data samples.

(2) Redundant Label Assignment: To ensure that all the labels are

likely to be covered in each round even with partial client partic-

ipation, we require each label 𝑦 ∈ 𝑌 to be assigned to more than

𝑛label𝑦 clients, which is a hyperparameter decided by the server.

(3) Limited Storage: Due to limited on-device storage, each client 𝑐

should be assigned to less than 𝑛client𝑐 labels to ensure a sufficient

number of valuable data samples stored for each assigned label, and

𝑛client𝑐 is also a hyperparameter decided by the server;

(4) Unbiased Global Distribution: The weighted average of all clients’
stored data distribution is expected to be equal to the unbiased

global data distribution, i.e., 𝑃 (𝑦) = 𝑃 (𝑦),∀𝑦 ∈𝑌 .
We formulate the cross-client data storage with the above four

properties by representing the coordination strategy as a matrix

𝐷 ∈N |𝐶 |× |𝑌 | , where 𝐷𝑐,𝑦 denotes the number of data samples with

label 𝑦 that client 𝑐 should store. We use matrix 𝑉 ∈ R |𝐶 |× |𝑌 | to
denote the statistical information of each client’s generated data,

where 𝑉𝑐,𝑦 = 𝑣𝑐𝑃𝑐 (𝑦) is the average speed of the data samples

with label 𝑦 generated by client 𝑐 . The cross-client coordination

strategy can be obtained by solving the following optimization

problem, where the condition (1) is formulated as the objective, and

conditions (2), (3), and (4) are described by the constraints (9b), (9c),

and (9d), respectively:

max

𝐷

∑︁
𝑐∈𝐶

∑︁
𝑦∈𝑌

𝐷𝑐,𝑦 ·𝑉𝑐,𝑦 =∥ 𝐷𝑉 ∥1, (9a)

s.t. ∥ 𝐷T

𝑦 ∥0⩾ 𝑛label𝑦 , ∀𝑦 ∈𝑌, (9b)

∥ 𝐷𝑐 ∥0⩽ 𝑛client𝑐 , ∀𝑐 ∈𝐶, (9c)

∥ 𝐷𝑐 ∥1= |𝐵𝑐 |, ∀𝑐 ∈𝐶,∑
𝑐∈𝐶 𝐷𝑐,𝑦

∥ 𝐵 ∥1
=

∑
𝑐∈𝐶 𝑉𝑐,𝑦

∥ 𝑉 ∥1
, ∀𝑦 ∈𝑌 . (9d)

Complexity Analysis.We can verify that the above optimization

problem with l0 norm is a general convex-cardinality problem,

which is NP-hard [21, 50]. To solve this problem, we divide it into

two subproblems: (1) decide which elements of matrix 𝐷 are non-

zero, i.e., 𝑆 = {(𝑐,𝑦) |𝐷𝑐,𝑦 ≠ 0}, that is to assign labels to clients

under the constraints of (9b) and (9c); (2) determine the specific

values of the non-zero elements of matrix 𝐷 by solving a simplified

convex optimization problem:

max

𝐷

∑︁
𝑐∈𝐶,𝑦∈𝑌,(𝑐,𝑦) ∈𝑆

𝐷𝑐,𝑦 ·𝑉𝑐,𝑦

s.t.
∑︁

𝑦∈𝑌,(𝑐,𝑦) ∈𝑆
𝐷𝑐,𝑦 = |𝐵𝑐 |, ∀𝑐 ∈𝐶,∑

𝑐∈𝐶,(𝑐,𝑦) ∈𝑆 𝐷𝑐,𝑦

∥ 𝐷 ∥1
=

∑
𝑐∈𝐶 𝑉𝑐,𝑦

∥ 𝑉 ∥1
, ∀𝑦 ∈𝑌 .

(10)

As the number of possible 𝑆 can be exponential to |𝐶 | and |𝑌 |, it is
still prohibitively expensive to derive the globally optimal solution

of 𝐷 with large |𝐶 | (massive clients in FL). The classic approach

is to replace the non-convex discontinuous 𝑙0 norm constraints
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with the convex continuous 𝑙1 norm regularization terms in the

objective function [21], which fails to work in our scenario because

simultaneously minimizing as many as |𝐶 | + |𝑌 | non-differentiable
𝑙1 norm in the objective function will lead to high computation

and memory costs as well as unstable solutions [57, 59]. Thus, we

propose a greedy strategy to solve this complicated problem.

Greedy Cross-Client Coordination Strategy. We achieve the

four desirable properties through the following three steps:

(1) Information Collection: Each client 𝑐 ∈𝐶 sends the rough infor-

mation about local data to the server, including the storage capacity

|𝐵𝑐 | and data velocity 𝑉𝑐,𝑦 of each label 𝑦, which can be obtained

from the statistics of previous time periods. Then, the server can

construct the vector of storage size 𝐵 ∈N |𝐶 | and the matrix of data

velocity 𝑉 ∈R |𝐶 |× |𝑌 | of all clients.
(2) Label Assignment: The server sorts labels according to a non-

decreasing order of the total number of clients having this label.

We prioritize the labels with top rank in label-client assignment,

because these labels are more difficult to find enough clients to meet

Redundant Label Assignment property. For each considered label

𝑦 ∈𝑌 in the rank, there could be multiple clients to be assigned, and

the server allocates label 𝑦 to clients 𝑐 who generates data samples

with label 𝑦 in a higher data velocity. By doing this, we attempt to

satisfy the property of Efficient Data Selection. Once the number of

labels assigned to client 𝑐 is larger than 𝑛client𝑐 , this client will be

removed from the rank due to the Limited Storage property.
(3) Quantity Assignment:With the above two steps, we have decided

the non-zero elements of the client-label matrix 𝐷 , i.e., the set 𝑆 . To
further reduce the computational complexity and avoid the imbal-

anced on-device data storage for each label, we do not directly solve

the simplified optimization problem in (10). Instead, we require each

client to divide the storage capacity evenly to the assigned labels,

and compute a weight 𝛾𝑦 for each label 𝑦 ∈𝑌 to guarantee that the

weighted distribution of the stored data approximates the unbiased

global data distribution, i.e., satisfying 𝛾𝑦𝑃 (𝑦)=𝑃 (𝑦). Accordingly,
we can derive the weight 𝛾𝑦 for each label 𝑦 by setting

𝛾𝑦 =
𝑃 (𝑦)
𝑃 (𝑦)

=
∥ 𝑉 T

𝑦 ∥1 /∥ 𝑉 ∥1
∥ 𝐷T

𝑦 ∥1 /∥ 𝐷 ∥1
. (11)

Thus, each client 𝑐 only needs to maintain one priority queue with

a size
|𝐵𝑐 |
∥𝐷𝑐 ∥0 for each assigned label. In the local model training,

each participating client 𝑐 ∈𝐶𝑡 updates the local model using the

weighted stored data samples:

𝑤
𝑡,𝑖
𝑐 ← 𝑤

𝑡,𝑖−1
𝑐 − 𝜂

𝜁𝑐

∑︁
(𝑥,𝑦) ∈𝐵𝑐

𝛾𝑦∇𝑤𝑙 (𝑤𝑡,𝑖−1
𝑐 , 𝑥,𝑦), (12)

where 𝜁𝑐 =
∑
(𝑥,𝑦) ∈𝐵𝑐

𝛾𝑦 denotes the new weight of each client, and

the normalized weight of client 𝑐 ∈ 𝐶𝑡 for model aggregation in

round 𝑡 becomes 𝜁 𝑡𝑐 =
∑
𝑐∈𝐶𝑡

𝜁𝑐∑
𝑐′∈𝐶𝑡

𝜁𝑐′
.

We illustrate a simple example in Appendix A for better under-

standing of the above procedure.

Privacy Concern. The potential privacy leakage of uploading

rough local information is tolerable in practice, and can be further

avoided through Homomorphic Encryption [1], which enables to

sort 𝑘 encrypted data samples with complexity 𝑂 (𝑘 log𝑘2) [26].

Figure 2: Overview of ODE framework.

3.4 Overall Procedure of ODE
ODE incorporates cross-client data storage and on-client data evalu-

ation to coordinate mobile devices to store valuable samples, speed-

ing up model training process and improving inference accuracy

of the final model. The overall procedure is shown in Figure 2.

Key Idea. Intuitively, the cross-client data storage component

coordinates clients to store the high-quality data samples with dif-

ferent labels to avoid highly overlapped data stored by all clients.

And the on-client data evaluation component instructs each client

to select the data having similar gradient with the global data distri-

bution, which reduces the data heterogeneity among clients while

also preserves personalized information.

Cross-Client Data Storage. Before the FL process, the central

server collects data distribution information and storage capacity

from all clients (①), and solving the optimization problem in (9)

through our greedy approach (②).

On-Client Data Evaluation. During the FL process, clients

train the local model in participating rounds, and utilize idle com-

putation and memory resources to conduct on-device data selection

in non-participating rounds. In the 𝑡𝑡ℎ training round, non-selected

clients, selected clients and the server perform different operations:

• Non-selected clients: Data Evaluation (③): each non-selected

client 𝑐 ∈𝐶 \𝐶𝑡 continuously evaluates and selects the data sam-

ples according to the data valuation metric in (6), within which

the clients use the estimated global gradient received in last par-

ticipation round instead of the accurate global one. Local Gradient
Estimator Update (④): the client also continuously updates the local

gradient estimator 𝑔𝑐 using (7).

• Selected Clients: Local Model Update (⑤): after receiving the

new global model 𝑤𝑡−1
fed

and new global gradient estimator 𝑔𝑡−1

from the server, each selected client 𝑐 ∈𝐶𝑡 performs local model

updates using the stored data samples by (12). Local Model and
Estimator Transmission (⑥): each selected client sends the updated

model𝑤
𝑡,𝑚
𝑐 and local gradient estimator 𝑔𝑐 to the server. The local

estimator 𝑔𝑐 will be reset to 0 for approximating local gradient of

the newly received global model𝑤𝑡−1
fed

.

• Server: Global Model and Estimator Transmission (⑦): At the
beginning of each training round, the server distributes the global

model𝑤𝑡−1
fed

and the global gradient estimator 𝑔𝑡−1 to the selected

clients. Local Model and Estimator Aggregation (⑧): at the end of

each training round, the server collects the updated local models

𝑤
𝑡,𝑚
𝑐 and local gradient estimators 𝑔𝑐 from participating clients

𝑐 ∈𝐶𝑡 , which will be aggregated to obtain a new global model by

(2) and a new global gradient estimator by (8).
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4 EVALUATION
In this section, we first introduce experiment setting, baselines and

evaluation metrics. Second, we present the overall performance of

ODE and baselines on model training speedup and inference accu-

racy improvement, as well as the memory footprint and evaluation

delay. Next, we show the robustness of ODE against various environ-
ment factors. We also show the individual and integrated impacts of
limited storage and streaming data on FL to show our motivation,

and analyze the individual effect of different components of ODE,
which are shown in Appendix C.4 and C.5 due to the limited space.

4.1 Experiment Setting
Tasks, Datasets and ML Models. To demonstrate the ODE’s good
performance and generalization across various tasks, datasets and

ML models. we evaluate ODE on one synthetic dataset, two real-
world datasets and one industrial dataset, all of which vary in data

quantities, distributions and model outputs, and cover the tasks

of Synthetic Task (ST), Image Classification (IC), Human Activity

Recognition (HAR) and mobile Traffic Classification (TC). The sta-

tistics of the tasks are summarized in Table 1, and introduced in

details in Appendix C.1.

ParametersConfigurations.Themain configurations are shown

in Table 1 and other configurations like the training optimizer and

velocity of on-device data stream are presented in Appendix C.2.

Baselines. In our experiments, we compare two versions of

ODE, ODE-Exact (using exact global gradient) and ODE-Est (using
estimated global gradient), with four categories of data selection

methods, including random sampling methods (RS), importance-

sampling based methods for CL (HL and GN ), previous data selec-

tion methods for FL (FB and SLD) and the ideal case with unlimited

on-device storage (FD). These methods are introduced in details in

Appendix C.3.

Metrics for Training Performance. We use two metrics to

evaluate the performance of each method: (1) Time-to-Accuracy
Ratio: we measure the training speedup of global model by the ratio

of training time of RS and the considered method to reach the same

target accuracy, which is set to be the final inference accuracy of

RS. As the time of one communication round is usually fixed in

practical FL scenario, we can quantify the training time with the

number of communicating rounds. (2) Final Inference Accuracy: we
evaluate the inference accuracy of the final global model on each

device’s testing data and report the average accuracy for evaluation.

4.2 Overall Performance
We compare the performance of ODE with four baselines on all the

datasets, and show the results in Table 2.

ODE significantly speeds up the model training process. We ob-

served that ODE improves time-to-accuracy performance over the

existing data selection methods on all the four datasets. Compared

with baselines, ODE achieves the target accuracy 5.88×∼9.52× faster
on ST; 1.20×∼1.35× faster on IC; 1.55×∼2.22× faster on HAR; 2.5×
faster on TC. Also, we observe that the largest speedup is achieved

on the datast ST, because the high non-i.i.d degree across clients

and large data divergence within clients leave a great potential

for ODE to reduce data heterogeneity and improve training process

through data selection.

ODE largely improves the final inference accuracy. Table 2 shows
that in comparison with baselines with the same storage, ODE en-
hances final accuracy on all the datasets, achieving 3.24%∼7.56%
higher on ST, 3.13%∼6.38% increase on HAR, and around 6% rise on

TC. We also notice that ODE has a marginal accuracy improvement

(≈1.4%) on IC, because the FashionMNIST has less data variance

within each label, and a randomly selected subset is sufficient to

represent the entire data distribution for model training.

Importance-based data selection methods perform poorly. Table
2 shows that these methods even cannot reach the target final

accuracy on tasks IC, HAR and TC, as these datasets are collected

from real world and contain noise data, making such importance

sampling methods fail to work [39, 60].

Previous data selection methods for FL outperform importance
based methods but worse than ODE. As is shown in Table 2, FedBal-
ancer and SLD perform better than HL and GN, but worse than RS
in a large degree, which is different from the phenomenon in tradi-

tional settings [32, 39, 60]. This is because (1) their noise reduction

steps, such as removing samples with top loss or gradient norm,

highly rely on the complete statistical information of full dataset,

and (2) their on-client data valuation metrics fail to work for the

global model training in FL, as discussed in §1.

Simplified ODE reduces computation and memory costs signifi-
cantly with little performance degradation. We conduct another two

experiments which consider only the last 1 and 2 layers (5 layers

in total) for data valuation on the industrial TC dataset. Empirical

results shown in Figure 3 demonstrate that the simplified version

reduces as high as 44% memory and 83% time delay, with only 1%

and 0.1× degradation on accuracy and speedup.

ODE introduces small extra memory footprint and data processing
delay during data selection process. Empirical results in Table 3

demonstrate that simplified ODE brings only tiny evaluation delay

and memory burden to mobile devices (1.23ms and 14.47MB for TC

task), and thus can be applied to practical network scenario.

4.3 Robustness of ODE
In this subsection, we mainly compare the robustness of ODE and
previous methods to various factors in industrial environments,

such as the number of local training epoch𝑚, client participation

rate
|𝐶𝑡 |
|𝐶 | , storage capacity |𝐵𝑐 |, mini-batch size and data hetero-

geneity across clients, on the industrial TC dataset.

Number of Local Training Epoch. Empirical results shown in

Figure 4 demonstrate that ODE can work with various local training

epoch numbers𝑚. With𝑚 increasing, both of ODE-Exact and ODE-
Est achieve higher final inference accuracy than existing methods

with same setting.

Participation Rate. The results in Figure 5 demonstrate that

ODE can improve the FL process significantly even with small partic-

ipation rate, accelerating the model training 2.57× and increasing

the inference accuracy by 6.6%. This demonstrates the practicality

of ODE in the industrial environment, where only a small proportion

of mobile devices could be ready to participate in each FL round.

Other Factors. We also demonstrate the remarkable robustness

of ODE to device storage capacity, mini-batch size and data
heterogeneity across clients compared with previous methods,

which are fully presented in the technical report [24].
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Tasks Datasets Models #Samples #Labels #Devices 𝒏label𝒚
|𝑪𝒕 |

|𝑪 |
𝜼 𝒎 |𝑩𝒄 |

ST Synthetic Dataset [10] LogReg 1, 016, 442 10 200 5 5% 1𝑒−4 5 10

IC Fashion-MNIST [73] LeNet [37] 70, 000 10 50 5 10% 1𝑒−3 5 5

HAR HARBOX [54] Customized DNN 34, 115 5 120 5 10% 1𝑒−3 5 5

TC Industrial Dataset Customized CNN 37, 853 20 30 5 20% 5𝑒−3 5 10

Table 1: Information of different tasks, datasets, models and default experiment settings6.

Task Model Training Speedup
RS HL GN FB SLD ODE-Exact ODE-Est FD

ST 1.0× − 4.87× − 4.08× 9.52× 5.88× 2.67×
IC 1.0× − − − − 1.35× 1.20× 1.01×
HAR 1.0× − − − − 2.22× 1.55× 4.76×
TC 1.0× − − − − 2.51× 2.50× 3.92×
Task Inference Accuracy
ST 79.56% 78.44% 83.28% 78.56% 82.38% 87.12% 82.80% 88.14%

IC 71.31% 51.95% 41.45% 60.43% 69.15% 72.71% 72.70% 71.37%

HAR 67.25% 48.16% 51.02% 48.33% 56.24% 73.63% 70.39% 77.54%

TC 89.3% 69.00% 69.3% 72.19% 72.30% 95.3% 95.30% 96.00%

Table 2: ODE’s improvements on model training speedup and inference accuracy.
The symbol ’−’ means that the method fails to reach the target accuracy.

Figure 3: Performance and cost of simpli-
fied ODE with different #model layers.

Task Memory Footprint (MB)
RS HL GN ODE-Est ODE-Simplified

IC 1.70 11.91 16.89 18.27 16.92

HAR 1.92 7.27 12.23 13.46 12.38

TC 0.75 10.58 19.65 25.15 14.47

Task Evaluation Time (ms)
IC 0.05 11.1 21.1 22.8 11.4

HAR 0.05 0.36 1.04 1.93 0.53

TC 0.05 1.03 9.06 9.69 1.23

Table 3: The memory footprint and evaluation delay per
sample valuation of baselines on three real-world tasks.

(a) Epoch=2 (b) Epoch=10

Figure 4: The training process of different sampling methods
with various numbers of local epoch.

(a) Training Speedup (b) Final Accuracy

Figure 5: The performance of different data selection meth-
ods with various participation rates.

5 RELATEDWORKS
Federated Learning is a distributed learning framework that aims

to collaboratively learn a global model over the networked devices’

data under the constraint that the data is stored and processed

locally [43, 46]. Existing works mostly focus on how to overcome

the data heterogeneity problem [11, 14, 70, 77], reduce the commu-

nication cost [27, 33, 33, 75], select important clients [15, 38, 42, 52]

or train a personalized model for each client [20, 72]. Despite that

a few works consider the problem of online and continuous FL

[13, 66, 76], they did not consider the device properties of limited
on-device storage and streaming networked data.

Data Selection. In FL, selecting data from streaming data can

be seen as sampling batches of data from its distribution, which

is similar to mini-batch SGD. To improve the training process of

SGD, existing methods quantify the importance of each data sample

(such as loss [56, 61], gradient norm [30, 79], uncertainty [12, 71],

data shapley [22] and representativeness [48, 68]) and leverage im-

portance sampling or priority queue to select training samples. The

previous literature [39, 60] on data selection in FL simplify conducts

the above data selection methods on each client individually for

local model training without considering the global model. And all

of them require either access to all the data or multiple inspections

over the data stream, which are not satisfied in the mobile network

scenarios.

6 CONCLUSION
In this work, we identify two key properties of networked FL: lim-
ited on-device storage and streaming networked data, which have not

been fully explored in the literature. Then, we present the design,

implementation and evaluation of ODE, which is an online data se-

lection framework for FL with limited on-device storage, consisting

of two components: on-device data evaluation and cross-device

collaborative data storage. Our analysis show that ODE improves

both convergence rate and inference accuracy of the global model,

simultaneously. Empirical results on three public and one indus-

trial datasets demonstrate that ODE significantly outperforms the

state-of-the-art data selection methods in terms of training time,

final accuracy and robustness to various factors in industrial envi-

ronments.
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A SIMPLE EXAMPLE
In Figure 6, We use a simple example to illustrate our proposed

greedy solution for the cross-device collaborative data selection

described in §3.3.

Figure 6: A simple example to illustrate the greedy coordi-
nation. ① Sort labels according to #owners and obtain label
order {2, 1, 3}; ② Sort and allocate clients for each label under
the constraint of 𝑛client𝑐 and 𝑛class𝑦 ; ③ Obtain coordination ma-
trix 𝐷 and compute class weight 𝛾 according to (11).

B EMPIRICAL RESULTS FOR CLAIMS.

(a) Term 1 vs Term 2 (b) Round 0 vs Round 30 (c) Full model vs Last layer

Figure 7: Empirical results to support some claims, and the
experiment setting could be found in §4.1. (a): comparison of
the normalized values of two terms in (3) and (5). (b): com-
parison of the data values computed in round 0 and round 30.
(c): comparison of the data values computed using gradients
of full model layers and the last layer.

Empirical results to support some claims mentioned before, and the

experiment setting could be found in §4.1. Figure 7(a): comparison

of the normalized values of two terms in (3) and (5). Figure 7(b):

comparison of the data values computed in round 0 and round 30.

Figure 7(c): comparison of the data values computed using gradients

of full model layers and the last layer.

C EXPERIMENTS
C.1 Tasks and Datasets
Synthetic Task. The synthetic dataset we used is proposed in LEAF
benchmark [10] and is also described in details in [44]. It contains

200 clients and 1 million data samples, and a Logistic Regression

model is trained for this 10-class task.

Image Classification. Fashion-MNIST [73] contains 60, 000

training images and 10, 000 testing images, which are divided into

50 clients according to labels [46]. We train LeNet [37] for the

10-class image classification.

Figure 8: Unbalanced data
quantity of clients.

Figure 9: Data distribution in traf-
fic classification dataset.

Human Activity Recognition. HARBOX [54] is the 9-axis

OMU dataset collected from 121 users’ smartphones in a crowd-

sourcingmanner, including 34,115 data samples with 900 dimension.

Considering the simplicity of the dataset and task, a lightweight

customized DNNwith two dense layers followed by a SoftMax layer

is deployed for this 5-class human activity recognition task [41].

Traffic Classification. The industrial dataset about the task of

mobile application classification is collected by our deployment

of 30 ONTs (optimal network terminal) in a simulated network

environment from May 2019 to June 2019. Generally, the dataset

contains more than 560, 000 data samples and has more than 250

applications as labels, which cover the application categories of

videos (such as YouTube and TikTok), games (such as LOL and

WOW), files downloading (such as AppStore and Thunder) and

communication (such as WhatsApp and WeChat). We manually

label the application of each data sample. The model we applied is

a CNN consisting of 4 convolutional layers with kernel size 1 × 3
to extract features and 2 fully-connected layers for classification,

which is able to achieve 95% accuracy through CL and satisfy the

on-device resource requirement due to the small number of model

parameters. To reduce the training time caused by the large scale

of dataset, we randomly select 20 out of 250 applications as labels

with various numbers of data samples, whose distribution is shown

in Figure 9.

C.2 Configurations
For all the experiments, we use SGD as the optimizer and decay

the learning rate per 100 rounds by 𝜂new = 0.95 × 𝜂
old

. To simulate

the setting of streaming data, we set the on-device data velocity to

be 𝑣𝑐 =
#training samples

500
, which means that each device 𝑐 ∈𝐶 will

receive 𝑣𝑐 data samples one by one in each communication round,

and the samples would be shuffled and appear again per 500 rounds.

Other default configurations are shown in Table 1. Note that the

participating clients in each round are randomly selected, and for

each experiment, we repeat 5 times and show the average results.

C.3 Baselines
(1) Random sampling methods including RS (Reservoir Sam-

pling [65]) and FIFO (First-In-First-Out: storing the latest |𝐵𝑐 | data
samples)

4
.

(2) Importance sampling-based methods including HighLoss
(HL), using the loss of each data sample as data value to reflect the

informativeness of data [45, 56, 61], and GradientNorm (GN), quan-
tifying the impact of each data sample on model update through

its gradient norm [30, 79].

4
The experiment results of the two random sampling methods are similar, and thus

we choose RS for random sampling only.
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(3)Previous data selectionmethods for canonical FL including
FedBalancer (FB) [60] and SLD (Sample-Level Data selection) [39]

which are revised slightly to adapt to streaming data setting: (i)

We store the loss/gradient norm of the latest 50 samples for noise

removal; (ii) For FedBalancer, we ignore the data samples with loss

larger than top 10% loss value, and for SLD, we remove the samples

with gradient norm larger than the median norm value.

(4) Ideal case with unlimited on-device storage, denoted as

FullData (FD), using the entire dataset of each client for training to

simulate the unlimited storage scenario,.

C.4 Motivating Experiments
In this section, We provide the complete experimental evidences

for our motivation. First, we prove that the properties of limited

on-device storage and streaming data can deteriorate the classic

FL model training process significantly in various settings, such

as different numbers of local training epochs and different data

heterogeneity among clients. Then, we analyze the separate impact

of theses two properties on FL with different data selection methods.

Due to limited space, we only provide the main conclusions here

and the details of the experiment settings and results are provided

in the technical report [24].

The main results are: (1) When the number of local epoch 𝑚

increases, the negative impact of limited on-device storage is be-

coming more serious due to larger steps towards the biased update

direction, slowing down the convergence time 3.92× and decreasing
the final model accuracy by as high as 6.7%; (2) With the variance of

local data increasing, the reduction of convergence rate and model

accuracy is becoming larger. This is because the stored data samples

are more likely to be biased due to wide data distribution; (3) The

property of streaming data prevents previous methods frommaking

accurate online decisions, as they select each sample according to

a normalized probability depending on both discarded and upcom-

ing samples, which are not available in streaming setting. But ODE
selects each data sample through a deterministic valuation metric,

not affected by the other samples; (4) The property of limited stor-

age is the essential failure of existing data selection methods as

it prevents previous methods from obtaining full local and global

data information, guiding clients to select suboptimal data from

an insufficient candidate dataset. In contrast, ODE allows clients to

select valuable samples with global information from server.

C.5 Component-wise Analysis
In this subsection, we evaluate the effectiveness of each of the

three components in ODE: on-device data selection, global gradient
estimator and cross-client coordination strategy. The detailed exper-

imental settings, results and analysis are presented in the technical

report [24], and we only present the main conclusions here.

On-Client Data Selection. The result shows that without data
valuation module, Valuation- performs slightly better than RS but
much worse than ODE-Est, which demonstrates the significant role

of our data valuation and selection metric.

Global Gradient Estimator. Experimental results show that

using the naive estimation method instead of our proposed local

and global gradient estimators will lead to really poor performance,

as the partial client participation and biased local gradient will

cause the inaccurate estimation for global gradient, which further

misleads the clients to select samples using a wrong valuation

metric.

Cross-Client Coordination. Empirical result shows that with-

out the cross-client coordination component, the performance of

ODE is largely weakened, as the clients tend to store similar and

overlapped valuable data samples and the other data will be under-

represented.

The results altogether show that each component is critical for

the good performance of ODE.

D PROOFS
The full proofs of theorems and lemmas are also provided in the

technical report [24] due to limited space.
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