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Abstract— Machine learning (ML) models have been deployed
in mobile networks to deal with massive data from different layers
to enable automated network management. To overcome high
communication cost and severe privacy concerns of centralized
ML, federated learning (FL) has been proposed to achieve
distributed ML among numerous networked devices. While the
computation and communication limitation has been widely
studied, the impact of limited storage of mobile devices on the
performance of FL is still not explored. Without an effective
data selection policy to filter the massive streaming networked
data on devices, classical FL can suffer from much longer model
training time (4×) and dramatic inference accuracy reduction
(7%), observed in our experiments. In this work, we take the
first step to consider the online data selection for FL with limited
on-device storage. We first define a new data valuation metric for
data selection in FL with theoretical guarantee for simultaneously
accelerating model convergence and enhancing final accuracy.
We further design ODE, an Online Data sElection framework
for FL, to coordinate networked devices to store valuable data
samples collaboratively. Experimental results on one industrial
dataset and three public datasets show the remarkable advan-
tages of ODE over the state-of-the-art approaches. Particularly,
on the industrial dataset, ODE achieves as high as 2.5× speedup
of training time and 6% increase in final accuracy, and is robust
to various factors in practical environments.

Index Terms— Federated learning, limited on-device storage,
online data selection.

I. INTRODUCTION

THE next-generation mobile computing systems require
effective and efficient management of mobile networks

and devices in various aspects, including resource provision-
ing [1], security and intrusion detection [2], quality of service
guarantee [3], and etc. Analyzing and controlling such an
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increasingly complex mobile network with traditional human-
in-the-loop approaches will not be possible any more, due to
low-latency requirement, massive real-time data and compli-
cated correlation among data [4], [5]. For example, in network
traffic analysis, a fundamental task in mobile networks, devices
such as routers and ONTs (Optical Network Terminal) can
receive as many as 5, 000 packets per second. It is impractical
to manually analyze massive high-dimensional data within
milliseconds. Thus, machine learning (ML) models have been
widely applied to discover pattern behind high-dimensional
networked data, enable data-driven network control, and fully
automate the mobile network operation [6].

Despite that ML model overcomes the limitation of human-
in-the-loop approaches, its good performance highly relies
on the abundant high quality data for model training [7],
which is hard to obtain in mobile networks as the data is
resided on heterogeneous devices in a distributed manner.
On one hand, a ML model trained locally with limited data
and computational resources is unlikely to achieve desirable
inference accuracy and generalization ability [8]. On the other
hand, directly transmitting data from distributed networked
devices to a cloud server for centralized learning (CL) will
bring prohibitively high communication cost and severe pri-
vacy concerns. Recently, federated learning (FL) [9] emerges
as a distributed privacy-preserving ML paradigm to resolve
the above concerns, which allows networked devices to upload
local model updates instead of raw data, and a central server
to aggregate these local models into a global model, solving
the on-device data limitation, communication bottlenecks and
potential privacy leakage.

Motivation and New Problem. For applying FL to mobile
networks, we identify two unique properties of networked
devices: limited on-device storage and streaming networked
data, which have not been fully considered in previous FL
literature. (i) Limited on-device storage: due to hardware
resource constraints, mobile devices have restricted storage
space for each mobile application, and can reserve only a
small space to store data samples for model training without
compromising the quality of other services. For example, most
smart home routers have only 9-32MB storage to support
various kinds of services [10], and thus only tens of training
data samples can be stored in this scenario. (ii) Streaming
networked data: data samples are continuously collected by
mobile devices in a streaming manner, which need to make
online decisions on whether to store each arrived data sample.
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Fig. 1. Motivating experiments on 4 classic tasks to demonstrate the severe
impact of limited on-device storage on final accuracy and training time of FL.
(ST: synthetic task, IC: image classification, HAR: human activity recognition,
TC: network traffic classification.)

Without a carefully designed data selection policy to main-
tain the data samples in storage, the empirical distribution
of stored data could deviate from the true data distribution,
which further complicates the notorious problem of not inde-
pendent and identically distributed (non-iid) data distribution
in FL [11], [12]. Our experiments on a wide range of FL tasks
reveal that the traditional random selection policy significantly
degrades the performance of classic FL process in both model
training time and final inference accuracy, with 4× longer
training time and 7% accuracy reduction on network traffic
classification task, 3.05× and 13.1% on synthetic task, 1.49×
and 2.1% on image classification task, and 4.65× and 9.1% on
human activity recognition task (Figure 1). This is unaccept-
able in modern mobile networks, because the longer training
time diminishes the timeliness of ML models in dynamic
environments, and accuracy reduction results in failure to
guarantee the quality of service [3]. Therefore, a fundamental
problem when applying FL to mobile networks is how to select
valuable data samples from on-device streaming networked
data to simultaneously accelerate model training convergence
and enhance final inference accuracy?

Design Challenges. The design of such an online data
selection framework for FL involves three key challenges:

First, there is still no theoretical understanding about the
impact of local on-device data on the training speedup and
accuracy enhancement of global model in FL. Lacking infor-
mation about raw data and local models of the other devices,
it is challenging for one device to individually figure out the
impact of its local data sample on the performance of the
global model. Furthermore, the data sample-level correlation
between convergence rate and model accuracy is still not
explored in FL, and it is non-trivial to simultaneously improve
these two aspects through one unified data valuation metric.

Second, the lack of temporal and spatial information compli-
cates the online data selection in FL. For streaming networked
data, we could not access the data samples coming from
the future or discarded in the past. Lacking such temporal
information, one device is not able to leverage complete
statistical information (e.g. unbiased local data distribution) for
accurate data valuation like outliers and noise detection [13],
[14]. Further, due to the distributed paradigm of FL, one device
cannot conduct effective data selection without the knowledge
of other devices’ stored data and local models, denoted as
spatial information. This is because the valuable data samples
selected by each device may overlap with the data selected by
other devices. As a result, the locally valuable data may not
be globally valuable.

Third, data selection on mobile devices needs to be low
computation-and-memory cost due to the conflict between

limited hardware resources and requirement on quality of user
experience. As the additional time delay and memory costs
introduced by online data selection process would degrade
the performance of mobile network and user experience, the
real-time data samples must be evaluated efficiently. However,
the increasingly complex ML models lead to high computa-
tional complexity as well as large memory footprint for storing
intermediate model outputs during data selection.

Limitations of Related Works. The prior works on data
evaluation and selection failed to solve the above challenges.
(i) Data selection methods in CL, such as leave-one-out [15],
data shapley [16] and importance sampling [17], are not
appropriate for FL due to the first challenge: they could
only measure the value of each data sample corresponding
to the local model training process, rather than the global
model in FL. (ii) Data selection methods in FL did not
consider the two new properties of FL devices. Mercury [8],
FedBalancer [13] and the work from Li et al. [14] adopted
importance sampling [17] to select the data samples with high
loss or large gradient norm for training time speedup, but failed
to solve the second challenge: these methods need to leverage
the whole dataset or complete data distribution to normalize
the sampling weight and remove the outliers and noise.

Our Solutions. To solve the above challenges, we design
ODE, an online data selection framework that coordinates
networked devices to select and store valuable data samples
locally and collaboratively in FL, with theoretical guaran-
tees for simultaneously accelerating model convergence and
enhancing inference accuracy.

In ODE, we first theoretically analyze the impact of an
individual local data sample on the convergence rate and final
accuracy of the global model in FL. We discover a com-
mon dominant term in these two analytical expressions, i.e.,
⟨∇wl(w, x, y),∇wF (w)⟩, which implies that the projection of
the gradient of a local data sample to the global gradient is
a reasonable metric for data selection in FL. As this metric
is a deterministic value, each device can simply maintain
a priority queue to store the valuable data samples. Second,
considering the lack of temporal and spatial information,
we propose an efficient method for clients to approximate
this data selection metric by maintaining a local gradient
estimator on each device and a global one on the server. Third,
to overcome the potential overlap of the stored data caused
by data selection in a distributed manner, we further propose
a strategy for the server to coordinate each device to store
valuable data from different data distribution regions. Fourth,
to achieve computation and memory efficiency, we propose
a simplified version of ODE, which replaces the full model
gradient with partial model gradient to concurrently reduce
the computational cost of model backpropagation and save
the memory for buffering intermediate outputs of ML models.

Implementation and Evaluation. We evaluated ODE on
three public tasks: synthetic task (ST) [18], Image Classifica-
tion (IC) [19] and Human Activity Recognition (HAR) [20],
as well as one industrial traffic classification dataset (TC)
collected from our 30-days deployment on 30 ONTs in
practice, consisting of 560, 000+ packets from 250 mobile
applications. We compare ODE against three categories of
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data selection methods: random sampling [21], classic data
sampling approaches in CL [8], [13], [14] and data selection
methods for FL [13], [14]. The experimental results show
that ODE outperforms all these baselines, achieving as high
as 9.52× speedup of model training and 7.56% increase in
final model accuracy on ST, 1.35× and 1.4% on IC, 2.22×
and 6.38% on HAR, 2.5× and 6% on TC, with marginal extra
time delay and memory footprint. Moreover, ODE is robust to
different environmental factors, including local training epoch
number, client participation rate, on-device storage capacity,
mini-batch size and data heterogeneity across devices. We also
conduct ablation experiments to demonstrate the effectiveness
of each key component in ODE.

Summary of Contributions. Our contributions in this
work can be summarized as follows: (i) To the best of our
knowledge, we are the first to identify two new properties of
mobile devices when applying FL to mobile networks, limited
on-device storage and streaming networked data, and demon-
strate their enormity on FL process. (ii) We provide analytical
formulas on the impact of an individual local data sample on
the convergence rate and the final inference accuracy of the
global model, based on which we propose a new data valuation
metric for data selection in FL with theoretical guarantee for
simultaneously accelerating model convergence and improving
inference accuracy. Furthermore, we propose ODE, an online
data selection framework for FL, to realize on-device data
selection and cross-device collaborative data storage. (iii) We
conduct extensive experiments on three public datasets and
one industrial traffic classification dataset to demonstrate the
remarkable advantages of ODE against existing methods in FL.

II. PRELIMINARIES

In this section, we present the training process of FL
on mobile device. We consider the synchronous FL frame-
work [9], where a server coordinates a set of mobile
devices/clients1 C to conduct distributed model training. Each
client c∈C generates data samples in a streaming manner with
a velocity vc. We use Pc to denote the client c’s underlying
distribution of local data, and P̃c to represent the empirical
distribution of the stored data, denoted as Bc. The goal of
FL is to train a global model w from the locally stored data
P̃ =

⋃
c∈C P̃c with good performance with respect to the

underlying distribution of overall data P =
⋃

c∈C Pc:

min
w

F (w) =
∑
c∈C

ζc · Fc(w),

where ζc = vc∑
c′∈C vc′

denotes the normalized weight of each
client, Fc(w) = E(x,y)∼Pc

[
l(w, x, y)

]
is the expected loss of

the model w over the underlying data distribution of client c.
We also use F̃c(w) = 1

|Bc|
∑

x,y∈Bc
l(w, x, y) to denote the

empirical loss over the stored data of client c.
In this work, we investigate the impacts of each client’s lim-

ited storage on FL, and consider the widely adopted algorithm
Fed-Avg [9] for easy illustration. Under the synchronous
FL framework, the global model is trained by repeating the
following two steps for each communication round t:

1We will use mobile devices and clients interchangeably in this work.

(i) Local Training: In round t, the server selects a client
subset Ct⊆C to participate in model training process. Each
participating client c∈Ct downloads the current global model
wt−1

fed (the ending global model of the last round), and performs
m epochs of model updates with the locally stored data:

wt,i
c ← wt,i−1

c − η∇wF̃c(wt,i−1
c ), i = 1, · · · , m, (1)

where the starting model wt,0
c is initialized as wt−1

fed , and η
denotes the learning rate.

(ii) Model Aggregation: Each participating client c ∈
Ct uploads the updated local model wt,m

c , and the server
aggregates them to derive a new global model wt

fed:

wt
fed ←

∑
c∈Ct

ζt
c · wt,m

c , (2)

where ζt
c = vc∑

c′∈Ct
vc′

is the normalized weight of the
participating client c in current round t.

In the scenario of FL with limited on-device storage and
streaming networked data, we have an additional data selection
step for each client:

(iii) Data Selection: In each round t, once receiving a new
data sample, the client has to make an online decision on
whether to store the new sample (in place of an old one if
the storage area is fully occupied) or discard it. The goal of
this process is to select valuable data samples from on-device
streaming data for model training in the upcoming rounds.

III. ODE DESIGN

In this section, we first quantify the impact of a local data
sample on the performance of global FL model in terms
of convergence rate and inference accuracy. Based on the
common dominant term in these two analytical expressions,
we propose a new data valuation metric for data evaluation and
selection in FL (Section III-A), and develop a practical method
to estimate this metric with low computation and communi-
cation overhead (Section III-B). We further design a strategy
for the server to coordinate cross-client data selection process,
avoiding the potential overlapped data selected and stored by
different clients (Section III-C). Finally, we summarize the
procedure of ODE (Section III-D).

A. Data Valuation Metric

We evaluate the impact of a local data sample on FL
model from the perspectives of convergence rate and infer-
ence accuracy, which are two critical aspects for FL. The
convergence rate quantifies the reduction of loss function in
each training round, and determines the communication cost
of FL. The inference accuracy reflects the performance of a
model on guaranteeing the quality of application service and
user experience. For theoretical analysis, we follow one typical
assumption, which is widely adopted in previous literature.

Assumption 1 (Lipschitz Gradient): For each client c ∈ C,
the loss function Fc(w) is Lc-Lipschitz gradient, i.e., ∥
∇wFc(w1)−∇wFc(w2) ∥2⩽ Lc ∥ w1−w2 ∥2, which implies
that the global loss function F (w) is L-Lipschitz gradient with
L =

∑
c∈C ζcLc.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 23,2024 at 02:41:05 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: ODE: AN ONLINE DATA SELECTION FRAMEWORK FOR FL WITH LIMITED STORAGE 2797

Fig. 2. Normalized mean values of term 1 and term 2 across 35, 000+ data
samples in HAR task across different training rounds.

Convergence Rate. We provide a lower bound on the reduc-
tion of loss function of global model after model aggregation
in each communication round of FL.

Theorem 1 (Global Loss Reduction): With Assumption 1,
for an arbitrary set of clients Ct ⊆C selected by the server
in round t, the reduction of global loss F (w) is bounded by:

F (wt−1
fed )−F (wt

fed)︸ ︷︷ ︸
global loss reduction

⩾
∑
c∈Ct

m−1∑
i=0

∑
(x,y)∈Bc

[
−αc ∥∇wl(wt,i

c , x, y) ∥22︸ ︷︷ ︸
term 1

+ βc ⟨∇wl(wt,i
c , x, y),∇wF (wt−1

fed )⟩︸ ︷︷ ︸
term 2

]
, (3)

where αc = Lζt
c

2 ·
(

η
|Bc|

)2

and βc = ζt
c ·

(
η
|Bc|

)
.

Proof: Please refer to supplementary material. □
Theorem 1 demonstrates that the loss reduction of the global

FL model wt
fed in each round is closely related to two terms:

gradient magnitude of the local data sample (term 1) and the
projection of the local gradient of a data sample onto the global
gradient over global data distribution (term 2). We demonstrate
that term 2 has a significantly greater influence than term
1 from two perspectives. First, the coefficient ratio between
term 2 and term 1 is approximately βc

αc
≈404 in typical FL sce-

narios with learning rate 0.001 and on-device storage capacity
larger than 10 samples. Additionally, our experimental results
(Figure 2) on a real-world human activity recognition task
of over 35, 000 data samples illustrate that: on average, the
value of term 2 surpasses the value of term 1 by a factor of
90× across various global models in different training rounds.
Consequently, we can focus on term 2 (i.e., projection of
the local gradient of a data sample onto the global gradient)
when evaluating the impact of a local data sample on the
convergence rate of global model.

We next briefly describe how to evaluate data samples based
on term 2. The local model parameter wt,i

c in term 2 is
computed from Eq. (1), where the gradient ∇wF̃c(wt,i−1

c )
depends on all the locally stored data samples. In other words,
the value of term 2 depends on the “cooperation” of all
the locally stored data samples. Thus, we can formulate the
computation of term 2 via cooperative game theory, where
each data sample represents a player and the utility of each
sample set is the value of term 2. Within this cooperative game,
the individual contribution of each data sample to term 2 can
be regarded as its value, quantified through leave-one-out [15]

or Shapley Value [22]. However, these methods necessitate
multiple times of model retraining to compute the marginal
contribution of each data sample, and thus we propose a one-
step look-ahead policy to estimate each sample’s value by only
focusing on the first local training epoch (m=1).
Inference Accuracy. We can assume that the optimal model is
obtained by gathering all clients’ generated data and conduct-
ing CL. Moreover, as the testing dataset and the corresponding
testing accuracy are hard to obtain in FL, we propose to
leverage the weight divergence between the models trained
through FL and CL, i.e., ∥ wt

fed−wmt
cen ∥, to quantify the

accuracy of the FL model in each round t. With t→∞, we can
evaluate the final accuracy of FL model.

Theorem 2 (Model Weight Divergence): With
Assumption 1, for an arbitrary participating client set Ct,
we have the following inequality for the weight divergence
between the models trained through FL and CL after the tth

training round.

∥ wt
fed − wmt

cen ∥2
⩽ (1 + ηL)m ∥ wt−1

fed − wm(t−1)
cen ∥2

+
∑
c∈Ct

ζt
c

[
η

m−1∑
i=0

(1 + ηL)m−1−iGc(wt,i
c )

]
, (4)

where Gc(w) =∥ ∇wF̃c(w)−∇wF (w) ∥2.
Proof: Please refer to supplementary material. □

The following lemma further shows the impact of a local data
sample on weight divergence ∥wt

fed−wmt
cen ∥2 through Gc(wt,i

c ).
Lemma 1 (Gradient Divergence): For an arbitrary client

c∈C, Gc(w) =∥∇F̃c(w)−∇F (w)∥2 is bounded by:

Gc(w)⩽
[
∥∇wF (w)∥22︸ ︷︷ ︸

constant

+
∑

(x,y)∈Bc

1
|Bc|

(
∥ ∇wl(w, x, y) ∥22︸ ︷︷ ︸

term 1

− 2
〈
∇wl(w, x, y),∇wF (w)

〉︸ ︷︷ ︸
term 2

)]1/2

. (5)

Proof: Please refer to supplementary material. □
Due to distinct coefficients, the twofold gradient projection

(term 2) naturally exhibits a larger mean and variance com-
pared with the gradient L2-norm (term 1) across various data
samples. Also, as mentioned before, our experimental results
shown in Figure 2 demonstrate the contrasting magnitude
orders of term 1 and term 2 (e.g., value of term 2 surpasses
value of term 1 by a factor of 90× on the real-world HAR
task). As a result, we can quantify the impact of a local data
sample on Gc(w) and the inference accuracy mainly through
term 2, which happens to be the same as the term 2 in (3).
Data Valuation. Based on the above analysis, we define a
new data valuation metric for FL, and provide theoretical
understanding as well as intuitive interpretation.

Definition 1 (Data Valuation Metric): In the tth round, for
a client c∈C, the value of a data sample (x, y) is defined as
the projection of its local gradient ∇l(w, x, y) onto the gradi-
ent of current global model over the global data distribution:

v(x, y) def=
〈
∇wl(wt

fed, x, y),∇wF (wt
fed)

〉
. (6)
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Fig. 3. Experimental results on three FL tasks to support that the data values remain stable across a few training rounds.

Based on this new data valuation metric, once a client receives
a new data sample, she can make an online decision on
whether to store this sample by comparing its data value
with values of old samples in storage, which can be easily
implemented as a priority queue on each client.

Theoretical Understanding. On one hand, maximizing the
above data valuation metric of the selected data samples is a
one-step greedy strategy for minimizing the loss of the updated
global model in each training round, because it optimizes the
dominant term 2 in the lower bound of global loss reduction
in Eq. (3). The one-step-look-ahead policy means that we
only consider the first epoch of the local model training in
Eq. (3), i.e., ⟨∇wl(wt,i

c , x, y),∇wF (wt−1
fed )⟩ with index i set

as 0. On the other hand, this metric also improves the inference
accuracy of the final global model by narrowing the gap
between the models trained through FL and CL, as it reduces
the high-weight term of the dominant part in Eq. (4), i.e.,
(1 + ηL)m−1Gc(w

t,0
k ).

Intuitive Interpretation. Large value of a data sample indi-
cates that its impact on the global FL model is similar to that
of the underlying global data distribution, guiding the clients
to select the data samples which not only follow their own
local data distribution but also have similar effects with the
global data distribution. In this way, part of the personalized
information of each client’s local data is preserved while the
data heterogeneity across clients is also reduced, which have
been demonstrated to improve FL performance [23], [24], [25].

B. On-Client Data Selection

In practice, it is non-trivial for one client to directly utilize
the above data valuation metric for online data selection due
to the following two challenges: (i) Lack of the latest global
model: due to the partial participation of clients in FL, each
client c ∈C cannot derive the global FL model wt−1

fed in the
rounds that she is not selected for model training, and only has
the outdated global FL model from the previous participating
round, i.e., w

tc,last−1
fed . (ii) Lack of unbiased global gradient:

the accurate global gradient over the unbiased global data
distribution can only be obtained by aggregating all the clients’
local gradients over their unbiased local data distributions.
This is hard to achieve because only partial clients partic-

ipate in each communication round, and the locally stored
data could become biased during the on-client data selection
process.

We can consider that challenge (i) does not affect the
online data selection process too much and clients can simply
leverage the outdated global model for data valuation. This
relies on our experimental observation in Figure 3 that the
value of each data sample remains stable across a few train-
ing rounds. For example, the Pearson correlation coefficients
between data values computed with FL models in rounds t
and t + 10 consistently surpass 0.85 for all the three typical
FL tasks.

To overcome challenge (ii), we propose a gradient estima-
tion method. First, to solve the issue of skew local gradient,
each client c ∈ C is allowed to maintain a local gradient
estimator ĝc, which is continuously updated whenever the nth

streaming data sample (x, y) is generated by the client:

ĝc ←
n− 1

n
ĝc +

1
n
∇wl(wtc,last−1

fed , x, y), (7)

where tc,last denotes the last participating round of client
c, and thus w

tc,last−1
fed denotes the latest global model that

client c received. Essentially, the local gradient estimator
works as a running sum estimation of the gradient of the
underlying local data distribution, which approximates the
average gradient of all data samples generated by client c
since last participating round. When the client c is selected
to participate in FL in a certain round t, the client uploads
the current local gradient estimator ĝc to server, and resets the
local gradient estimator as a new global FL model wt−1

fed is
received, i.e., ĝc ← 0, n← 0. Second, to solve the problem
of skew global gradient caused by partial client participation,
the server is requested to maintain a global gradient estimator
ĝt, which is an aggregation of the local gradient estimators,
i.e. ĝt =

∑
c∈C ζcĝc. As it incurs high communication cost

to collect ĝc from all clients, the server only uses ĝc of the
participating clients to update global gradient estimator ĝt in
each round t: ĝt ← ĝt−1+

∑
c∈Ct

ζc(ĝc− ĝtlast
c ). The rationale

behind the global gradient estimator lies in the high similarity
between the gradients of each client’s local data distribution
over global models in two consecutive participating rounds,
as demonstrated empirically in Figure 3. Thus, in each round
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Fig. 4. Experiments results to demonstrate the high similarity between data
values computed from partial model and full model.

t, the server needs to distribute both the current global model
wt−1

fed and the latest global gradient estimator ĝt−1 to each
selected client c∈Ct, who will conduct local model training
and upload both locally updated model wt,m

c and local gradient
estimator ĝc back to the server.

Simplified Version. In both of the local gradient estimation
in Eq. (7) and data valuation in Eq. (6), for a new data sample,
we need to backpropagate the entire ML model to compute the
gradient, which introduces high computation cost and memory
footprint for buffering the intermediate outputs of model.
Consequently, we propose to use the gradients of the last few
network layers of ML models instead of the whole model for
data selection. The success of such simplification relies on
our experimental observation in Figure 4 that partial model
gradient is able to reflect the trend of the full model gradient.
Specifically, the Pearson correlation coefficient between data
values computed from only last model layer and full model
layers consistently exceeds 0.93 for image classification task
and 0.85 for human activity recognition task.

Privacy Concern. Uploading local gradient estimators may
disclose the private information of each client, which can be
mitigated through differential privacy [26]. Specifically, dif-
ferential privacy empowers clients to add a controlled amount
of Gaussian noise to local gradient estimator for obfuscating
the true information, while ensuring that the aggregated global
gradient estimator remains unbiased and meaningful.

C. Cross-Client Data Storage

Since the local data distributions of different clients may
overlap with each other, independently conducting data selec-
tion process for each client may lead to the distorted
distribution of data stored by all clients.

One potential solution is to divide the global data distribu-
tion into several regions, and coordinate each client to store
valuable data samples for one specific distribution region,
while the union of all stored data still follow the unbiased
global data distribution. In this work, we consider the label
of data samples as the dividing criterion.2 Thus, before the
training process, the server needs to instruct each client the
labels and the corresponding quantity of data samples to store.
Considering the partial client participation and heterogeneous

2There are some other methods to divide the data distribution, such as
K-means and hierarchical clustering, and our results are independent on them.

data distribution among clients, the cross-client coordination
policy need to satisfy the following four desirable properties:
(i) Efficient Data Selection: To improve the efficiency of data
selection, the label y ∈ Y should be assigned to the clients
who generate more data samples with this label, following
the intuition that there is a higher probability to select more
valuable data samples from a larger candidate dataset.
(ii) Redundant Label Assignment: To ensure that all the labels
are likely to be covered in each round even with partial client
participation, each label y ∈ Y is required to be assigned to
more than nlabel

y clients, which is a hyperparameter decided
by the server.
(iii) Limited Storage: Due to limited on-device storage, each
client c should be assigned to less than nclient

c labels to ensure
a sufficient number of valuable data samples stored for each
label, and nclient

c is a hyperparameter decided by the server;
(iv) Unbiased Global Distribution: The weighted average of
all clients’ stored data distribution is expected to be equal to
the unbiased global data distribution, i.e., P̃ (y)=P (y), y∈Y .

Problem Formulation. We represent the cross-client data
storage strategy as a coordination matrix D∈N|C|×|Y |, where
Dc,y denotes the number of data samples with label y that
client c is allowed to store. We use matrix V ∈ R|C|×|Y | to
denote the statistical information of each client’s generated
data, where Vc,y = vcPc(y) denotes the average speed of the
data samples with label y generated by client c. The cross-
client coordination algorithm can be obtained by solving an
optimization problem, where the four properties are math-
ematically expressed as the objective and three constraints.
Specifically, the objective is to maximize the dot projection
between coordination matrix D and information matrix V to
optimize the data selection efficiency of property (i). Remain-
ing properties (ii)-(iv) can be formulated as constraints on each
column and row of the coordination matrix D:

max
D

∑
c∈C

∑
y∈Y

Dc,y · Vc,y =∥ DV ∥1, (8)

s.t. ∥ DT
y ∥0⩾ nlabel

y , ∀y ∈ Y, (9)

∥ Dc ∥0⩽ nclient
c , ∀c ∈ C, (10)

∥ Dc ∥1= |Bc|, ∀c ∈ C,∑
c∈C Dc,y

∥ B ∥1
=

∑
c∈C Vc,y

∥ V ∥1
, ∀y ∈ Y. (11)

Complexity Analysis. We can verify that the above
optimization problem with l0 norm is a convex-cardinality
problem, which is NP-hard [27]. The globally optimal solution
can be obtained through the following two steps: (i) Decide
the feasible region: determine the non-zero elements within the
coordination matrix D, i.e. S = {(c, y)|Dc,y ̸= 0}, to satisfy
constraints (9) and (10); (ii) Solve the simplified problem:
determine the specific values of the non-zero elements in S
by solving a simplified optimization problem:

max
D

∑
c∈C,y∈Y,(c,y)∈S

Dc,y · Vc,y

s.t.
∑

y∈Y,(c,y)∈S

Dc,y = |Bc|, ∀c ∈ C,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 23,2024 at 02:41:05 UTC from IEEE Xplore.  Restrictions apply. 



2800 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024∑
c∈C,(c,y)∈S Dc,y

∥ D ∥1
=

∑
c∈C Vc,y

∥ V ∥1
, ∀y ∈ Y. (12)

Compared with the original optimization problem, the objec-
tive (8) remains unchanged and the constraints (9) and (10)
are eliminated. Consequently, the solution to the simplified
problem (12) can be regarded as part of the solution to the
original optimization problem (8)-(11). As the number of
possible S can be exponential to |C| and |Y |, it is impractical
to solve the simplified problem for exponential times to derive
the globally optimal solution D. The classic approach is to
replace all the non-convex discontinuous l0 norm constraints
with the convex and continuous l1 norm [27], which fails to
work in our scenario because simultaneously minimizing as
many as |C|+|Y | l1 norms in the objective function will lead
to high computation and memory costs as well as unstable
solutions [28]. As a result, we propose an intuitive and greedy
algorithm that enables the direct identification of the non-zero
elements S in the coordination matrix D. The key insight of
our greedy algorithm lies in identifying S with the highest
potential value of objective function (8).

Algorithm 1 Greedy Cross-Client Coordination
Input: Label vector Y , client vector C, data velocity matrix

V , storage size matrix B, redundant label assignment
nlabel, limited storage nclient

Output: Coordination matrix D
// Sort labels by number of owners

1 Y ← Sort Y in an increasing order of the number of
non-zero elements in V [:, y];

2 for y in Y do
// Sort clients by data velocity

3 C_tmp← Sort c ∈ C in an decreasing order of the data
velocity V [c, y];

4 for c in C_tmp do
// Limited storage requirement

5 if Sum(D[c, :])< nclient
c then

6 D[c, y]← 1;
7 end

// Redundant label requirement
8 if Sum(D[:, y])≥ nlabel

y then
9 Break;

10 end
11 end
12 end

// Divide each device storage evenly
13 for c in C do
14 cnt←Sum(D[c, :]);
15 for y in Y do
16 D[c, y]← B[c, y] ∗D[c, y]/cnt;
17 end
18 end
19 return D;

Greedy Cross-Client Coordination. We summarize the
greedy algorithm in Algorithm 1 and provide an illustrative
example in Figure 5, which consists of three steps:
(i) Information Collection: Each client c∈C sends the rough
information about its local data to the server, including the
storage capacity |Bc| and data velocity Vc,y for each label
y, which can be obtained from the statistics of previous time
periods. Based on this information, the server constructs the
storage size vector B ∈ N|C| and the data velocity matrix

V ∈ R|C|×|Y | for all clients. For example, in Figure 5,
clients c1, c2, c3 upload server the storage space of |B1| =
20, |B2| = 15, |B3| = 15 and data velocity vectors of V1 =
[400, 200, 300], V2 =[200, 300, 200], V3 =[300, 0, 400].
(ii) Label Assignment: Aligned with the objective (8), our
goal is to assign each label to clients with higher generation
velocities for that label. This can be achieved by ranking
clients based on their corresponding velocities for each label
and allocating each label to the top few clients within the
constraint (9). However, constraint (10) limits the number
of data labels each client can store, which may contradict
with the allocation results computed previously. We note that
fulfilling constraint (9) is more challenging than constraint (10)
due to the existence of scarce labels with few owners, and
thus ODE prioritizes the allocation of such scarce labels. For
implementation, the server first sorts labels Y according to
the number of owners (line 1-2). Then, for each considered
label y ∈ Y in the order, the server sorts all clients based
on their generation velocities (line 3-5), and then the label y
is allocated to the top clients within constraint (10), which
can be achieved by removing a client c from the sorting
order once the number of its assigned labels exceeds nclient

c

(line 6-10). In Figure 5, central server first sorts the clients for
each label based on the clients’ generation velocities to obtain
the sorting order (c1, c3, c2) for label y1, (c2, c1) for label y2,
(c3, c1, c2) for label y3. Next, the server sorts the data labels
in a non-decreasing order based on the number of owners and
obtains the label order (y2, y1, y3). Based on the above sorting
orders and constraints (9) and (10), server assigns label y2 to
clients (c1, c2), label y1 to clients (c1, c3), and label y3 to
clients (c3, c2) for data selection and storage.

(iii) Quantity Assignment: With the two steps mentioned
above, we have determined the non-zero elements of the
client-label coordination matrix D. To further reduce computa-
tional complexity and avoid imbalanced on-device data storage
for each label, we do not directly solve the simplified optimiza-
tion problem (12), and require each client to evenly divide the
storage capacity among the assigned labels. To ensure that
the weighted distribution of the stored data approximates the
unbiased global data distribution, we compute a weight γy for
each label y∈Y to satisfy γyP̃ (y) = P (y) (line 18-23):

γy =
P (y)
P̃ (y)

=
∥ V T[y] ∥1 / ∥ V ∥1
∥ DT[y] ∥1 / ∥ D ∥1

. (13)

As a result, each client only needs to maintain one priority
queue with a size of |Bc|

∥Dc∥0 for each assigned label. During
local model training, each participating client c∈Ct updates
its local model using the weighted stored data samples:

wt,i
c ← wt,i−1

c − η

ζc

∑
(x,y)∈Bc

γy∇wl(wt,i−1
c , x, y), (14)

where ζc =
∑

(x,y)∈Bc
γy denotes the new weight of each

client, and the normalized weight of client c∈Ct for model
aggregation in round t becomes ζt

c =
∑

c∈Ct

ζc∑
c′∈Ct

ζc′
. Take

client c1 in Figure 5 for example, for label y1, its fraction in
the whole storage space is 10+0+10

20+40+20 = 1
4 , while its fraction in

all the clients’ generated data samples is 400+200+300
900+700+700 = 9

23 .
Therefore, the weight of label y1 on client c1 is 9/23

1/4 = 36
23 .
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Fig. 5. A simple example to illustrate the greedy algorithm.

Approximation Ratio. Given that it is difficult to the-
oretically analyze the approximation ratio of the greedy
Algorithm 1, we empirically demonstrate its effectiveness
in estimating the globally optimal solution to the original
optimization problem (8)-(11) under various FL settings.
For simplicity, we set the class number to 10 and the
hyper-parameters to nclient

c =2 and nlabel
y =2. In each experi-

ment, we sample each client’s data velocity matrix Vc from a
uniform distribution, and compare the objective function val-
ues of solutions obtained by four methods: Optimal (traversing
the entire feasible region to find the globally optimal solution),
Greedy (Algorithm 1), Random (average result of 20 solutions
sampled randomly from the feasible region), and Worst (worst
result of 20 random solutions). Empirical results shown in
Figure 6 illustrate that our greedy algorithm consistently
achieves an approximation ratio exceeding 0.8 across various
FL settings.

Privacy Concern. The potential leakage of such rough
information is generally acceptable to clients, since it does
not expose the specific raw data samples. To further address
the privacy concern, fully homomorphic encryption sorting can
be employed to sort k encrypted elements with computational
complexity O(log2 k) [29]. Consequently, the central server
can leverage the encrypted information of each client to obtain
cross-client coordination strategy by (i) sorting |Y | data classes
with complexity O(log2 |Y |), and (ii) sorting the clients for
each class with total complexity O(|Y | log2 |C|).

D. Overall Procedure of ODE

As illustrated in Figure 7, ODE incorporates cross-client data
storage and on-client data evaluation to coordinate clients to
collaboratively store valuable samples for FL, simultaneously
speeding up model training process and improving inference
accuracy of the final global model.

Key Idea. The cross-client data storage component coordi-
nates clients to store the valuable data samples with different
labels to avoid highly overlapped data stored by all clients.
The on-client data evaluation component instructs each client
to select the data having similar local gradient with the global
gradient, which reduces data heterogeneity among clients
while also preserves part of the personal information as the
data samples are selected from the true local data distribution.

Cross-Client Data Storage. Before the FL model training
process, the central server collects data distribution informa-
tion and storage capacity from all clients (①), and greedily
solves the optimization problem in Eq. (8)-(11) (②).

On-Client Data Evaluation. During the FL process, each
client trains the local model in participating rounds, and
leverages idle computation and memory resources to perform
on-device data selection in non-participating rounds, which
introduces little extra time overhead to each FL training round.
In the tth training round, non-selected clients, selected clients
and server execute different processes:
• Non-Selected Clients. Data evaluation (③): each

non-selected client c ∈ C \Ct steadily evaluates and selects
the streaming data samples according to the data valuation
metric in Eq. (6), where the clients leverage the global gradient
estimator received in last participating round instead of the
accurate one for data evaluation. Local gradient estimator
update (④): the client also dynamically updates the local
gradient estimator ĝc with real-time data through Eq. (7).
• Selected Clients. Local model update (⑤): after receiving

the new global model wt−1
fed and new global gradient estimator

ĝt−1 from the server, each selected client c∈Ct performs local
model updates using the stored data samples by Eq. (14). Local
model and estimator transmission (⑥): each selected client
uploads the updated model wt,m

c and local gradient estimator
ĝc to server. Then, the local estimator is reset to approximate
the local gradient of the newly received global model.
• Server. Global model and estimator transmission (⑦):

at the beginning of each round t, the server distributes the
global model wt−1

fed and the global gradient estimator ĝt−1 to
the selected clients Ct. Local model and estimator aggregation
(⑧): at the end of each round, the server collects the updated
local models wt,m

c and local gradient estimators ĝc from
participating clients c ∈ Ct to derive the new global model
and update the global gradient estimator ĝt.

IV. EVALUATION

In this section, we first introduce experiment setting, base-
lines and evaluation metrics (Section IV-A). Second, we show
the individual and integrated impacts of the limited on-device
storage and streaming networked data on FL to demonstrate
the motivation of our work (Section IV-B). Third, we present
the overall performance of ODE and baselines, including model
training speedup, final inference accuracy, memory footprint
and data evaluation delay (Section IV-C). Next, we test
the robustness of ODE against various environmental factors
(Section IV-D), such as the number of local training epochs
m, client participation rate |Ct|

|C| , on-device storage capacity
Bc, mini-batch size, data heterogeneity across clients and
varied levels of statistical error in clients’ velocities. Finally,
we analyze the component-wise effect of ODE (Section IV-E).

A. Experiment Setting

Learning Tasks, Datasets and ML Models. To demon-
strate the ODE’s superior performance and generalization
across various learning tasks, datasets and ML models.
We evaluate ODE on one synthetic dataset, two real-world
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Fig. 6. Comparison of the objective function values obtained by four different methods: Optimal, Greedy, Random and Worst Case.

TABLE I
STATISTICS OF DIFFERENT TASKS, DATASETS, MODELS AND DEFAULT EXPERIMENT SETTINGS

Fig. 7. Overview of ODE framework.

datasets and one industrial dataset, all of which vary in data
quantities, distributions and model outputs, and cover the
tasks of synthetic task (ST), image classification (IC), human
activity recognition (HAR) and network traffic classification
(TC). The statistics of these tasks are summarized in Table I:

(i) Synthetic Task. The synthetic dataset we used is proposed
in LEAF benchmark [18], which contains 200 clients and
1 million data samples, and a logistic regression model is
trained for this 10-class classification task.

(ii) Image Classification. Fashion-MNIST [19] contains
60, 000 training images and 10, 000 testing images, which
are divided into 50 clients according to labels [9]. We train
LeNet [30] for this 10-class image classification task.

(iii) Human Activity Recognition. HARBOX [20] is a
9-axis IMU dataset collected from 121 users’ smartphones
in a crowdsourcing manner, including 34,115 data samples
with 900 dimension. Considering the simplicity of the dataset,
a lightweight customized DNN with two dense layers followed
by a SoftMax layer is deployed for this 5-class human
activity recognition task.

(iv) Network Traffic Classification. The industrial dataset
of mobile application classification is collected from 30
ONT devices in a simulated network environment from May
2019 to June 2019. Generally, the dataset contains more than
560, 000 data samples and 250 mobile applications as labels,
which cover the categories of video, game, file downloading
and communication. We manually label the application of

each data sample. The model we leverage is a typical CNN
consisting of 4 convolutional layers with kernel size 1×3 to
extract features and 2 fully-connected layers for classification.
To reduce the training time caused by the large scale of dataset,
we uniformly select 20 out of 250 applications with a total
number of 37, 707 data samples as training data.

Parameters Configurations. For all the experiments,
we use SGD as the optimizer and decay the learning rate per
100 rounds by ηnew = 0.95×ηold. To simulate the setting of
streaming networked data, we set the on-device data velocity
to be vc = #training samples

500 , which means that each device
c ∈ C will receive vc data samples one by one in each
communication round, and the samples would be shuffled
and appear again per 500 rounds. Other default configurations
are shown in Table I. Note that the participating clients in
each round are randomly selected, and for each experiment,
we repeat 5 times and present the average results.

Baselines. In our experiments, we compare two versions of
ODE, ODE-Exact (using exact global gradient) and ODE-Est
(using estimated global gradient), with four categories of data
selection baselines, including random sampling methods (RS),
importance-based methods for CL (HL and GN), existing data
selection methods for FL (FB and SLD) and the ideal case
with unlimited on-device storage (FD):

(i) Random sampling (RS) includes Reservoir Sampling [21]
and First-In-First-Out (storing the latest |Bc| data samples).
As their experimental results are comparable, we show the
results of First-In-First-Out for RS only.

(ii) Importance sampling-based methods include HighLoss
(HL), which uses the loss of each data sample as value for
selection [31], [32], and GradientNorm (GN), which quantifies
the data value through gradient norm [17], [33].

(iii) Existing data selection methods for FL includes FedBal-
ancer (FB) [13] and SLD (Sample-Level Data selection) [14],
which are slightly revised for adapting to streaming data.
Specifically, we store the loss/gradient norm of the latest
50 samples for noise removal. For FB, we ignore the data
samples with top 10% loss values, and for SLD, we remove
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TABLE II
IMPACT OF LIMITED ON-DEVICE STORAGE ON TRAFFIC CLASSIFICATION TASK WITH DIFFERENT SETTINGS,

WHERE THE CONVERGENCE TIME IS NORMALIZED BY THE TIME OF FD

the samples with gradient norm larger than the median norm
value.

(iv) Ideal method with unlimited on-device storage, denoted
as FullData (FD), using the entire dataset of each client for
training to simulate the unlimited storage scenario.

Metrics for Training Performance. We use two metrics
to evaluate the performance of each data selection method:
(i) Time-to-Accuracy Ratio: we measure the model training
speedup by the ratio of training time of RS and the considered
method to reach the same target accuracy, which is set to
be the final inference accuracy of RS. As the time of one
communication round is usually fixed in practical FL scenario,
we can quantify the training time with the number of commu-
nicating rounds. (ii) Final Inference Accuracy: we evaluate the
inference accuracy of the final global model on each device’s
testing data, and report the average accuracy for evaluation.

B. Experiment Results for Motivation

In this subsection, we provide the comprehensive exper-
imental results for the motivation of our work. First,
we demonstrate the severe impact of limited on-device storage
and streaming networked data on classic FL process in various
settings, such as different numbers of local training epochs and
various clients’ data. Then, we analyze the separate impacts
of theses two properties.

Overall Impact. To investigate the impact of limited
on-device storage and steaming networked data on FL with
different data settings, such as the range and variance of local
data distribution, we conduct experiments over three settings
with different numbers of labels owned by each client, which
is constructed from the industrial TC dataset. The experimental
results shown in Table II demonstrate that: (i) With local
data variance increasing, the model training speed and final
accuracy drops significantly, as the stored data is more likely
to be biased when the underlying data distibution has a wide
range; (ii) When the number of local training epochs increases,
the negative impact of two properties becomes more serious
due to large model updates toward the biased direction.

Individual Impact. To show the individual impact of
streaming networked data, we ignore limited storage by assum-
ing that each device can utilize all the generated data instead
of only stored data for online data evaluation and selection.
To show the individual impact of limited storage, we ignore
streaming networked data by supposing that in each epoch,
all the new data samples are generated concurrently and
can be accessed arbitrarily. The experimental results shown

Fig. 8. Unbalanced data sizes of clients.

Fig. 9. Performance of ODE with different numbers of model layers for data
evaluation and selection on industrial TC task.

TABLE III
IMPACTS OF LIMITED STORAGE AND STREAMING DATA ON FL WITH

ST DATASET. SYMBOL ’−’ MEANS FAILING
TO REACH TARGET ACCURACY

in Table III demonstrates that limited storage is the root
cause of the performance degeneration of FL process, because
(i) streaming data mainly prevents previous methods from
making accurate online decisions on data selection, as they
select each sample according to a normalized probability
depending on both discarded and upcoming samples, which
are not available in streaming setting but can be estimated; (ii)
the limited storage prevents previous methods from deriving
complete information of local and global data and guides
clients to select suboptimal data from an insufficient candidate
dataset.

C. Overall Performance

We compare the performance of ODE with six baselines,
and show the main results in Table IV.
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TABLE IV
OVERALL PERFORMANCE OF DIFFERENT DATA SELECTION METHODS. SYMBOL ’−’ MEANS FAILING TO REACH THE TARGET ACCURACY

Fig. 10. Robustness to number of local training epochs.

Fig. 11. Robustness of ODE to client participation rate.

ODE significantly speeds up the model training process on
all datasets. Compared with baselines, ODE achieves the target
accuracy 5.88−9.52× faster on ST; 1.20−1.35× faster on
IC; 1.55−2.22× faster on HAR; 2.5−2.51× faster on TC.
Also, we observe that the highest speedup is achieved on ST,
because the high non-i.i.d degree across clients and large data
divergence within each client leave a great potential for ODE
to reduce data heterogeneity and improve training process.
ODE improves the inference accuracy of the final model.

Table IV shows that compared with baselines, ODE enhances
final accuracy on all the datasets, achieving 3.24− 7.56%
higher on ST, 3.13−6.38% on HAR, and around 6% on TC.
We also notice that ODE has a marginal accuracy improvement

(≈ 1.4%) on IC, because the FashionMNIST dataset has less
data variance within each label, and a randomly selected subset
is sufficient to represent the entire data distribution.

Importance-based data selection methods perform poorly.
Table IV also reveals that these methods cannot reach
the target final accuracy on tasks of IC, HAR and TC,
as these real-world datasets contain noise, making such
importance-based methods fail to work [13], [14].

Previous data selection methods for FL outperform
importance-based methods but worse than ODE. As shown in
Table IV, FedBalancer and SLD perform better than HL and
GN, but worse than RS in a large degree, which is different
from the phenomenon in traditional settings [13], [14], [34].
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Fig. 12. Robustness of ODE to on-device storage capacities.

TABLE V
MEMORY FOOTPRINT AND EVALUATION DELAY PER SAMPLE

OF DIFFERENT DATA SELECTION METHODS ON
THREE REAL-WORLD DATASETS

Fig. 13. Robustness of ODE-Sim to various mini-batch sizes.

This is because (i) their noise cleaning steps, such as removing
samples with top loss or gradient norm, highly rely on the
complete statistical information of full dataset, and (ii) their
on-client data valuation metrics fail to work for the global
model training in FL, as discussed in Section I.

Simplified ODE reduces computation and memory costs sig-
nificantly with marginal performance degradation. We conduct
another two experiments which utilize only the last 1 and
2 layers for data valuation on the industrial TC dataset.
Empirical results shown in Figure 9 demonstrate that the
simplified version reduces as high as 44% memory and 83%
time delay, with only 0.1× and 1% degradation on training
speedup and accuracy improvement. Unbalanced data sizes of
clients.
ODE introduces small extra memory footprint and data

evaluation delay. Empirical results in Table V demonstrate that

Fig. 14. Robustness of ODE-Sim to data heterogeneity.

simplified ODE (ODE-Sim) brings only tiny evaluation delay
and memory burden to devices (e.g., 1.23ms and 14.47MB for
industrial TC task), and thus is applicable to practical network.

D. Robustness of ODE

In this section, we compare the robustness of ODE with
baselines to various environmental factors, including the num-
ber of local training epoch, client participation rate, storage
capacity, mini-batch size, data heterogeneity across clients,
and the statistical error of clients’ data velocities. For the
three public datasets, we test the robustness of ODE-Exact,
ODE-Est and ODE-Sim (using only last model layer), while
for the industrial TC dataset, we only report the performance
of ODE-Exact and ODE-Est, as ODE-Sim has quite similar
performance with ODE-Est.

Number of Local Training Epoch. Empirical results
shown in Figures 10 demonstrate that (i) ODE can work with
various local training epoch numbers m. With m increasing
from 2 to 10, all versions of ODE achieve higher training
speedup and final inference accuracy than existing methods;
(ii) ODE-Est has similar performance with ODE-Exact;
(iii) ODE-Sim has slightly inferior performance compared
with ODE-Est, but consistently outperforms RS, which
inspires us to trade-off the efficiency and effectiveness of ODE
in practical deployment by adjusting the number of model
layers for data selection. The first phenomenon coincides with
the previous analysis in Section III-A: (i) for convergence rate,
the one-step-look-ahead strategy of ODE only optimizes the
loss reduction of the first local training epoch in Eq. (3), and
thus the influence on model convergence will be weakened
when the number of local epoch increases; (ii) for inference
accuracy, ODE narrows the gap between the models trained
through FL and CL by optimizing the dominant term with the
maximum weight of the gap bound in (5), leading to better
final inference accuracy with a larger m.

Participation Rate. The results in Figure 11 demon-
strate that all versions of ODE can improve the FL process
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Fig. 15. We visualize the relative observation error in data generation velocities of random 20 clients.

Fig. 16. Impact of clients’ statistical errors in data generation velocities.

significantly even with small client participation rate. Specif-
ically, ODE-Exact accelerates the model training by 2.57×
and increases the inference accuracy by 6.6% in TC task,
9× and 8% in ST, 2× and 3% in IC, and 2× and 6% in
HAR. ODE-Est achieves 2.4× training speedup and 6.1%
accuracy increase in TC, 6× and 4% in ST, 1.5× and 2%
in IC, 1.3× and 4% in HAR. Furthermore, we observe that
ODE-Sim performs slightly worse than ODE-Est, due to the
inconsistent data values computed from all model layers and
only final layer. This demonstrates the practicality of ODE in
the real-world environments, where only a small proportion
of devices are available to participate in each FL round.
We also notice that in some tasks, the training speedup of
ODE degenerates with high client participation rate, which
weakens the impact of data heterogeneity across clients and
the effectiveness of ODE

Storage Capacity. We conduct experiments on various
storage capacities of devices, and plot the training time
speedup and final accuracy of each data selection method in
Figure 12, which demonstrate that (i) the performance of RS
degrades rapidly with the decrease of storage capacity in most
tasks; (ii) ODE has stable performance across different storage
capacities, and thus is more robust to potentially diverse
storage capabilities of heterogeneous devices; (iii) Compared
with ODE, RS needs more than twice storage space to achieve
the same model training performance.

Mini-batch Size. As mini-batch SGD is widely used in
FL to accelerating model training, we evaluate ODE-Sim on
various mini-batch sizes, where we adjust the learning rate
from η to 0.2η to reduce the instability of local model training
process. Experimental results in Figure 13 demonstrate that
(i) ODE-Sim consistently improves the performance of FL
across various mini-batch sizes and real-world FL tasks; (ii)
The smaller batch size is, the more training speedup and
accuracy improvement can be achieved by ODE-Sim, which
coincides the results of different numbers of local training
epochs.

Data Heterogeneity. Similar with previous work, we manu-
ally adjust the number of data labels assigned to each client to
simulate different heterogeneity levels. In ST and HAR task,
the data has been already distributed to clients during the data
collection process, and thus we focus on IC and TC datasets.
Empirical results in Figure 14 illustrate that ODE achieves
3.6−5.6% increase in inference accuracy and 1.56−2.07×
speedup in training time in different heterogeneous settings of
TC task, 0.25−1.02% and 1.11− 1.34× in IC task. Despite
that the performance of ODE seems to degrade in the extremely
heterogeneous case (#Label=1), such degradation is caused
by the limited number of data labels owned by each client,
which diminishes the effectiveness of the cross-device data
selection component of ODE. This situation typically does
not appear in practice as real-world devices usually possess
multiple data labels (e.g., mobile applications).

Statistical Error in Data Generation Velocities. In real
world, the statistical information collected by clients from
previous time periods may not be accurate, which potentially
deteriorates the effectiveness of cross-client coordination strat-
egy and the overall performance of ODE. To test the impact
of such issue, we introduce an statistical error σc ∈ R|Y | to
the data velocity matrix Vc of each client c, where the error
σc is assumed to follow a Gaussian distribution with zero
mean. We conduct experiments on two real-world FL tasks
(IC and HAR) with three distinct levels of statistical error:
σc∼N (0, 0.3Vc),N (0, 0.5Vc),N (0, 1.0Vc). The relative error
rates of clients and data labels are visualized in Figure 15,
and experimental results in Figure 16 shed light on two
key observations: (i) As the error level rises, both the final
inference accuracy and model training speedup achieved by
ODE declines. (ii) ODE fails to be effective with the highest
error level σc∼N (0, Vc). Such outcome is acceptable, as this
level introduces deviations as high as 330% from the true data
generation velocity of each client and label, which is relatively
rare for practical devices with the help of historical data.

E. Component-Wise Analysis

In this section, we evaluate the effectiveness of each key
component in ODE: on-device data selection, global gradient
estimator and cross-client coordination algorithm.

On-Client Data Selection. To show the effect of on-client
data selection, we compare ODE with Valuation-, which
replaces our on-device data selection method with RS, but
still allows the server to coordinate the clients for collaborative
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Fig. 17. Component-wise analysis of ODE. Left: Image Classification. Middle: Human Activity Recognition. Right: Traffic Classification.

data storage. Figure 17 shows that Valuation- performs slightly
better than RS but much worse than ODE-Est, which implies
the significant role of our proposed data valuation metric and
data selection policy.

Global Gradient Estimator. To show the effectiveness of
the global gradient estimator, we compare ODE-Est with a
naive estimation method, namely Estimator-, where server
only aggregates the local gradient estimators of participating
clients to obtain a global gradient estimator, and each par-
ticipant only leverages the locally stored data instead of all
generated data to compute the local gradient. Figure 17 shows
that the naive estimation method has the poorest performance,
as the partial clients and biased local gradient lead to inaccu-
rate estimation for global gradient, misleading clients to select
data samples using a wrong data valuation metric.

Cross-Client Coordination. We conduct another experi-
ment where clients select and store data samples only based on
their local information without the coordination of the server,
namely Coor-. Figure 17 shows that the performance of ODE
is largely weakened in nearly all datasets, as the clients tend
to store similar and overlapped valuable data samples, and
thus other data will be under-represented. However, textitCoor-
has similar performance with ODE in IC task, because the
number of data labels owned by each client is the same as
the number of labels assigned to each client, diminishing the
effectiveness of cross-client collaborate data storage.

V. RELATED WORKS

Federated Learning is a distributed learning framework
aiming to learn a global model over multiple devices’
data without data sharing [9], [12]. Existing works mostly
focus on how to improve FL from the perspectives of sav-
ing communication and computation costs. Previous works
on communication cost reduction mainly leverage model
quantization [35], sparsification [36] and pruning [37] to
reduce the size of parameters transmitted between clients
and server, or consider hierarchical FL structure to improve
communication efficiency [38], [39]. Other literature enhances
computation efficiency of FL [40] from different perspectives,
such as improving the algorithms of local model update [41]
and global model aggregation [23], [24], optimizing the
client selection policy to mitigate the heterogeneity across
clients [42], [43], [44], and etc. However, most of them assume
a static training dataset on each device and overlook the
practical properties of limited on-device storage and streaming
networked data, which hinder the successul application of FL
to mobile networks.

Data Selection. In FL, selecting data from streaming data
can be seen as selecting batches of data from the underlying

data distribution. To improve the model training process,
existing methods select the most important data to participate
in model update through different metrics. Leave-one-out
test [15] and Data Shapley [16] quantify the value of each data
sample as its marginal contribution to the model performance,
such as the testing accuracy reduction or testing loss increase
when removing the data sample from the training dataset.
However, these approaches require multiple times of model
retraining to obtain the accurate performance of models when
removing certain data. Importance sampling [34] evaluates
data sample through training loss or gradient norm over current
model, which have been demonstrated to be theoretically opti-
mal for mini-batch SGD. Other heuristic data selection metrics
include data representativeness [45], model uncertainty [46],
and etc. However, previous work [13], [14] on data selection
in FL simply execute the above data selection process on
each client for local training speedup without considering the
impacts on global model training. Further, all of them require
either access to complete dataset or multiple inspections over
the streaming data, which is not practical in mobile networks.

Traffic Classification is a significant task in mobile
networks, which associates traffic packets with specific appli-
cations for the downstream network management task, such as
capacity planning and resource provisioning [47]. ML makes it
possible to directly input the raw features of packet data into
models for application identification or traffic classification,
eliminating the need for manual feature extraction. Typical raw
features can be categorized into three types. (i) Ports: the ports
in the TCP/UDP header of some packets are associated with
the well-known port numbers assigned by IANA,3 which can
server as the key features in determining the source application
of packet. (ii) Raw Bytes: The actual flow bytes from packet
headers and payloads can be leveraged for traffic classification,
as they contain the raw content transmitted by the packet
and thus can provide valuable information for identifying
the packet’s purpose [48]. However, this approach introduces
high computational overhead and is not suitable for encrypted
packet data [49]. (iii) Statistics: Statistical information includes
mean, standard, deviation, minimum, maximum, of packet
lengths, inter-arrival times, flow durations, number of packets,
number of bytes, etc. These statistics form a feature vector for
each flow and are widely employed to overcome the challenges
posed by encrypted payload and users’ privacy concern.

VI. CONCLUSION AND FUTURE WORK

In this work, we identify two key properties of net-
worked FL in mobile networks: limited on-device storage and

3https://www.iana.org/assignments/service-names-port-numbers/service-
names-port-numbers.xhtml
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streaming networked data, which have not been explored in
previous literature. Then, we present the design, implementa-
tion and evaluation of ODE, which is an online data selection
framework for FL with limited on-device storage and consists
of two components: on-device data evaluation and cross-device
collaborative data storage. Extensive experiments on three
public and one industrial dataset demonstrate that ODE sig-
nificantly outperforms state-of-the-art data selection methods
in terms of training time, final accuracy and robustness to
various environmental factors.

In our research, we primarily focus on FL tasks involv-
ing automatic data labeling and stable data distribution of
each client, which represent a wide range of mobile appli-
cations. For example, in keyboard prediction, a mobile user
typically types 2, 000 characters per day, which can natu-
rally serve as labels for preceding words. In mobile traffic
classification, smart home routers can receive over 5, 000 non-
encrypted packets per hour, which can be directly analyzed and
labeled [47]. In image classification, the photo tags uploaded
or corrected by users can be regarded as the image labels.
In these applications, the interests and behavior of mobile users
tend to remain stable over a certain period, indicating that
the data distribution of each client typically does not undergo
significant changes. Also, the utilizing unlabeled and dynamic
streaming data is an important but under-explored area, which
will be investigated in our future work.
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