
APPENDIX

A. Proof of Theorem 1

Theorem 1 (Global Loss Reduction) With Assumption on
Lipschitz property, for an arbitrary set of clients Ct ⊆ C
selected by the server in round t, the reduction of global loss
F (w) is bounded by:
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Proof. From the L-Lipschitz continuity of global loss function
F (w), we have
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where the global model can be further decomposed into the
weighted sum of the updated models of participating clients:
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We can further express the locally updated model wt,m

c of
each client c∈Ct as the difference between the original global
model wt−1

fed and m local model updates:
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where the i-th local model update of each client c can be
expressed as the average gradient of the stored data samples:
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B. Proof of Theorem 2

Theorem 2 (Model Weight Divergence) With Assumption on
Lipschitz property, for an arbitrary participating client set Ct,
we have the following inequality for the weight divergence
between the models trained through FL and CL after the t-th
training round.
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where Gc(w) =∥ ∇wF̃c(w)−∇wF (w) ∥2.

Proof. According to the aggregation formula of Fed-Avg and
the model update formula (1), we have:
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Then, we leverage the triangle inequality to upper bound (20):
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According to the Lipschitz continuity of global model F in
Assumption 1, we can further upper bound the Eq. (21):
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where Gc(w) =∥ ∇wF̃c(w)−∇wF (w) ∥ intuitively represents
the divergence between empirical losses over the local data
distribution and global data distribution.
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which can be transformed using Assumption of Lipschitz:
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Hence, we bound the divergence between models trained
through FL and CL by the initial model difference and the
additional divergence caused by m local model updates of
heterogeneous participating clients.

C. Proof of Lemma 1

Lemma 1 (Gradient Divergence) For an arbitrary client
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where δ= is a constant term for all data samples.

Proof. The main idea of the proof is to express the local
gradient∇wF̃c(w) as the average gradient of the locally stored
data samples in Bc:

Gc(w) =∥ ∇wF̃c(w)−∇wF (w) ∥

=
[
∥ ∇wF (w) ∥2+∥ ∇wF̃c(w) ∥2−2

〈
∇wF (w),∇wF̃c(w)

〉]1/2
=
[
∥ ∇wF (w) ∥2 + ∥

∑
(x,y)∈Bc

∇wl(w, x, y)

|Bc|
∥2

− 2
〈
∇wF (w),

∑
(x,y)∈Bc

∇wl(w, x, y)

|Bc|
〉]1/2

⩽

[
∥ ∇wF (w) ∥2 +

∑
(x,y)∈Bc

1

|Bc|

(
∥ ∇wl(w, x, y) ∥2

− 2
〈
∇wF (w),∇wl(w, x, y)

〉)]1/2

,

where ∥ ∇wF (w) ∥2 is a constant term for all clients and
local data samples.
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