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Abstract—In mobile computing, the demand for model training
on devices is escalating due to data privacy and personalized
service needs. However, we observe that current model training
is hampered by the under-utilization of on-device data, due
to low training throughput, limited storage and diverse data
importance. To improve data resource utilization, we propose
a two-stage data selection framework Titan to select the most
significant data batch from streaming data for model training
with guaranteed efficiency and effectiveness. Specifically, in the
first stage, Titan filters out a candidate dataset with potentially
high importance in a coarse-grained manner. In the second stage
of fine-grained selection, we propose a theoretically optimal data
selection strategy to identify the data batch with the highest
model performance improvement to current training round. To
further enhance time-and-resource efficiency, Titan leverages a
pipeline to co-execute data selection and model training, and
avoids resource conflicts by exploiting idle computing resources.
We evaluate Titan on real-world devices and three typical mobile
computing tasks with diverse data modalities. Empirical results
demonstrate that Titan achieves up to 43% reduction in training
time and 6.2% increase in final accuracy with minor system
overhead, such as data processing delay, memory footprint and
energy consumption.

Index Terms—mobile computing, on-device machine learning,
data selection and utilization

I. INTRODUCTION

Machine learning (ML) models have been widely embedded
in mobile applications to provide diverse intelligent services,
such as image tagging in Google Lens [1], command recogni-
tion in Siri [2], text prediction in Microsoft SwiftKey [3] and
etc. With growing concerns over data privacy and higher de-
mands on personalized model performance, on-device model
training is becoming necessary to facilitate a single device to
adapt the local model to its own data distribution [4]–[6], or
multiple devices to collaboratively train a global model that
can generalize well across different data distributions [7].

A successful ML model training process highly relies on
an abundant high-quality dataset for model training [8]–[10].
On one hand, a large-scale training dataset is essential to
the generalization capability of the final model [9]. On the
other hand, massive high-quality data helps to stabilize the
parameter update process of model training and further reduce
the number of training rounds to reach a target accuracy [10].
As a result, on the cloud side, it is common to collect extensive
training data for iterative model updates, such as 29 million
games for training AlphaGo [11] and 500 billion tokens for

pre-training ChatGPT-3.5 [12]. Similarly, for the device side,
it is also desirable to fully utilize the on-device data resource
to achieve satisfactory model training performance.

Previous works for on-device model training mainly focused
on the exploitation of limited hardware resources, such as
optimizing memory allocation to increase batch size dur-
ing training [4], [13], co-using multiple types of computing
resources to speed up model inference and training [14]–
[17], dynamically adjusting the size of trainable parameters
to improve training efficiency [18], [19] and etc. However, we
observe that the under-utilization of data resource is another
key bottleneck to on-device model training, which results in up
to 3.5× longer training time and 13.3% lower final accuracy in
our pilot experiments due to low training throughput, limited
storage and diverse data importance (elaborated in §II-B).
Therefore, a crucial open problem is: Is it possible to design an
on-device data selection framework to concentrate the limited
hardware resources on important training data for superior
model training performance?

A practical data selection framework for on-device model
training has to achieve effectiveness and efficiency simulta-
neously, which is challenging: 1) Effectiveness: As the on-
device model performance directly impacts the quality of
application service and user experience, it is necessary for the
data selection framework to provide theoretical and empirical
guarantees on the improvement of model training performance.
2) Efficiency: For deployment, the data selection framework is
desired to be time-and-resource efficient. First, the application
data typically undertakes real-time services like teleconferenc-
ing, which requires the data selection process to be low-latency
to avoid compromising user experience. Second, the data
selection framework needs to avoid intense resource conflict
with model training process, which would extend the time of
each model update and offset the performance improvement
brought by data selection.

It is challenging to satisfy these two properties simulta-
neously. Higher effectiveness necessitates a more accurate
but time-intensive data importance (or quality) evaluation
process over a broader candidate dataset, which inevitably
increases per-sample latency and consumes more computing
resources. Our theoretical analysis and experimental results
in §II-C indicate that conventional cloud-side data selection
approaches such as importance sampling [20], [21], heuristic



selection [22]–[26] and coreset selection [27]–[29] fail to be
applied to device side due to ineffectiveness or inefficiency.

In this work, we address the above challenge by proposing
a two-stage online data selection framework Titan, which
simultaneously achieves high effectiveness and efficiency for
on-device data utilization. First, to guarantee the effectiveness,
we theoretically analyze the correlation between the training
data batch and the on-device model training performance,
based on which we demonstrate the sub-optimality of the state-
of-the-art importance sampling approach due to overlooking
a crucial term of class variance during inter-class batch size
allocation. Further, we propose a theoretically optimal data
selection strategy to identify the data batch with the highest
improvement to model performance in each training round.
Second, to improve time-efficiency, Titan employs a two-stage
architecture. In the first stage, Titan leverages a carefully
designed coarse-grained filter to estimate the potential impor-
tance of each streaming data sample within millisecond-level
latency, and locally buffers a small candidate dataset. In the
second stage, the buffered candidate dataset undergoes our pro-
posed data selection strategy to enhance effectiveness. Third,
for higher time-and-resource efficiency, we design a pipeline to
facilitate the co-execution of model training and data selection,
and exploits the idle computing resources commonly seen on
devices to mitigate potential resource conflicts.

In summary, our main contributions are as follows:
• To the best of our knowledge, we are the first to point out the

severity of data under-utilization in on-device model training
process, and conduct in-depth analysis for this issue.

• We perform comprehensive evaluation of existing cloud-
side data selection approaches for device-side setting, and
provide theoretical and empirical analysis on their failures.

• We propose an on-device data selection framework Titan,
consisting of a theoretically optimal data selection strategy,
a two-stage architecture and a pipeline design, to simultane-
ously achieve high efficiency and effectiveness for on-device
data utilization.

• We implement Titan framework on real-world device and
demonstrate Titan’s superiority across three typical mobile
computing tasks with varied data modalities and ML models.

II. BACKGROUND AND MOTIVATION

A. On-Device Model Training

Similar to cloud-side ML, the objective of on-device model
training can be formulated as minimizing the loss function
L(w,P), which represents the prediction error (or loss) of
model with parameters w on local data distribution P:

w∗ = min
w

L(w,P) ≜ E(x,y)∼P [l(w, x, y)], (1)

where E(x,y)∼P
[
l(w, x, y)

]
denotes the expected loss (or

error) of model w over data (x, y) following distribution P .
In on-device model training, mini-batch SGD [30] is widely

adopted to solve the above optimization problem (1), which
involves three steps in each training round t:
1) Data Collection: Data samples (x, y)∼P are continuously
collected by device in a streaming manner and stored in the

local storage. We use S and Sy to denote the sets of all the
stored data samples and the data samples with class y∈Y .
2) Data Loading: A batch of data samples B={(xi, yi)|1≤ i≤
|B|} is loaded from storage to memory as training data.
3) Model Update: Current model parameters wt are updated
by the average gradient of the loaded training data batch:

wt+1 = wt − ηt · E(x,y)∈B
[
∇wl(wt, x, y)

]
,

where wt denotes the updated model parameter in training
round t and ηt is the corresponding learning rate.

Typically, data collection is conducted concurrently with
data loading and model update, both of which are executed
alternatively and iteratively.

B. Under-Utilization of On-Device Data Resources

We elaborate three characteristics of edge devices, which
lead to the under-utilization of on-device data resources.

Low data throughput during model training. The limited
memory and computing resources of devices restrict the train-
ing data throughput. First, the memory size constrains the
number of data samples that can be co-processed within a
data batch (e.g. batch size 16 for common lightweight model
MobileNetV1 has reached the limit of high-end devices like
MI 9 with 6GB RAM [31]). Second, the on-device per-sample
training time is relatively long due to the limited computing
hardware [15]. Specifically, the forward-and-backward propa-
gation over modern ML models can be time-consuming (e.g.
it takes around 20s for the representative device Jetson Nano
to train one data batch with size 16 on MobileNetV1).

Limited on-device storage for training data. In numerous
mobile applications, on-device data is continuously collected
in a streaming manner, but devices typically have quite limited
storage for training data due to user preference as well as
software and hardware limitation. On one hand, users usually
prioritize reserving storage space for personal files like photos,
documents and chathistory instead of each application’s train-
ing data. On the other hand, both iOS and Android platforms
impose size limitations on applications, such as less than 4GB
for an iOS app [32] and no more than 2GB for a Google Play
app [33]. Furthermore, for low-end smartphones or IoT devices
like HUAWEI WiFi AX3 [34] with less than 1GB storage, it
is impractical to save all the collected data for model training.

Diverse data importance to training performance. The on-
device data samples have diverse importance (or quality)
for model training, stemming from 1) the wide range of
on-device data distribution caused by varied user behaviors
and application services at different times of a day, and
2) heterogeneous data quality due to sensors from different
producers and unstable network environments. Consequently,
the involvement of low-importance data in model training will
further reduce the on-device data utilization.

The aforementioned properties restrict the on-device data
utilization and hinder the success of on-device model training
processes. On one hand, if we attempt to utilize all the
collected data for parameter update to achieve superior training
performance, all the samples need to be incorporated in each
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Fig. 1. Final accuracy and normalized time of model training processes over
CIFAR-10 dataset using varied proportions of data for parameter update.

training round, which leads to substantial per-round training
time and storage overhead [13], [35]. On the other hand, if
we leverage only partial data for higher efficiency of model
training and data storage, the parameter update computed from
partial data tend to deviate from the expected update computed
from all data, thereby degrading the final model accuracy [20].
Our preliminary experiments on representative device Jetson
Nano and dataset CIFAR-10 [36] in Fig. 1 show that leveraging
only partial data resource can reduce the final accuracy by
9.6−13.4% while the utilization of full data will prolong total
training time by 2.05−3.24×. Therefore, an on-device data
selection framework is necessary to focus limited hardware
resources on partial but important data resources for higher
data utilization efficiency.

C. Limitation of Existing Data Selection Approaches

Existing cloud-side data selection approaches can hardly be
applied to the device side due to ineffectiveness or inefficiency.

Importance sampling (IS) [20], [21] is the state-of-the-art
data selection approach, which selects each training data sam-
ple according to its importance to model training performance.
Previous research has demonstrated a negative correlation
between the gradient variance of the training data batch1 and
the model training performance. As a result, IS defines the
per-sample importance as its gradient norm to minimize such
gradient variance and optimize the training performance.

However, IS is neither effective nor efficient for devices.
On one hand, we identify that the theoretical optimality of IS
relies on an underlying assumption that each sample in the
training data batch is independently selected, which leads to
sub-optimal performance for batch-level selection, especially
for small training batches on devices. The detailed theoretical
analysis and verification results are provided in §III-B. On the
other hand, IS requires computing each sample’s gradient over
model parameters, which can prolong the per-round training
time by up to 7× shown in Fig. 2(a). For device-side efficient
deployment, Mercury [37] proposed to divide the dataset into
multiple subsets and recompute only one subset’s importance
per training round, which however, is not applicable for real-
world mobile computing tasks involving streaming data.

Heuristic data selection (HDS) enhances model training
efficiency by selecting the training data with various intuitive
metrics, such as model uncertainty quantified by loss or en-
tropy of model output logits [22], [24], data representativeness

1The variance represents the average difference between the gradient of the
selected training data and the expected gradient of the entire dataset.
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Fig. 2. Per-round training time and training curves of existing data selection
methods on MobileNetV1 and CIFAR-10, tested on real device Jetson Nano.

measured by closeness to the distribution centroid in feature
space [26] and diversity to other samples [25], and etc.

We find that HDS is efficient but lacks effectiveness from
both theoretical and empirical aspects. Theoretically, existing
HDS fails to directly correlate the data importance metric with
model training performance, thereby essentially optimizing
a proxy objective of intuitively defined metrics rather than
the fundamental objective (1) of model training performance.
Therefore, practical implementation of HDS often involves
cumbersome trial-and-error processes to explore the appropri-
ate metrics that could bring the highest model performance
improvement. Empirically, Figures 2(b) reveals that HDS (i.e.
Loss, Entropy and Repre&Div) even leads to degraded training
performance compared with random selection when the batch
size is small. This is because traditional HDS relies on large
batch sizes to mitigate the distribution deviation and parameter
update bias of the heuristically selected training data batch.

Coreset Selection (CS) [27]–[29] aims to select a small
weighted data subset, i.e. coreset, to approximate the entire
dataset in terms of gradient computation, thereby reducing the
training data scale without significant deviation in parameter
update direction. Previous research formulated the gradient
estimation error of the coreset as a sub-modular function, and
derived the optimal coreset by minimizing such error.

We observe that CS is either inefficient or ineffective for
devices. To select a coreset with size |B| from |S| data sam-
ples, CS requires computing the gradients of all |S| samples
to solve the error minimization problem, incurring high com-
putation overhead similar to IS. Instead of directly minimizing
the gradient distance between coreset and the entire dataset,
Camel [29] uppers bound the gradient distance by raw input
distance to avoid the cumbersome model backpropagation pro-
cess. However, this approximation compromises the theoretical
guarantee of CS and also exhibits inferior performance in our
prior experiments in Fig. 2(b). This is because the complex
structures of modern ML models and the wide distribution of
on-device data make the raw data distance unable to accurately
reflect the gradient distance.

III. DESIGN OF TITAN

A. Overview

Titan aims to exploit on-device data resources effectively
and efficiently by incorporating three key designs: 1) a theoret-
ically optimal strategy for training data batch selection, which
operates as a fine-grained selection component to identify
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the data batch that brings the highest improvement to model
performance, 2) a coarse-grained filter to filter out a small
candidate dataset from streaming data in real time through
heuristic metrics specially co-designed with the optimal fine-
grained selection component, 3) a pipeline design to co-
execute the processes of data selection and model training and
mitigate their potential resource conflict by utilizing on-device
idle computing resources.

Workflow. As depicted in Fig. 3, Titan adopts a two-stage
architecture and forks three concurrent processes to steadily
select the optimal training data batch from real-time data
streams for each round of model training: 1) Coarse-grained
filter: Whenever a data sample is collected by device, Titan
extracts its feature by inputting the data into shallow layers
of ML models, and estimates its potential importance within
milliseconds through two specially designed heuristic metrics.
Then, Titan maintains a candidate dataset in local buffer
with a priority queue to facilitate the subsequent fine-grained
selection. 2) Fine-grained selection: During each round t,
Titan computes the gradient for each buffered data sample
over the final model layer, and identifies the ideal data batch
for next round t+1 through the proposed optimal data selection
strategy. 3) Model update: Simultaneously in round t, current
model parameter wt is updated by the data batch chosen in
preceding round t− 1, which forms a seamless pipeline with
the fine-grained selection process for the upcoming round.

B. Fine-Grained Data Selection

To optimize the effectiveness of on-device data selection,
we propose a new data batch selection strategy for mini-batch
SGD, namely classified importance sampling (C-IS), which
consists of inter-class batch size allocation and intra-class data
selection. We first provide the definitions of class importance
and sample importance, which are used to determine how
many and which data samples to select for each class. Then,
we analyze C-IS’s theoretical optimality in improving on-
device model training performance and provide an intuitive
explanation for better understanding.

Inter-Class Batch Size Allocation. To select a batch of
training data with size |B|, C-IS determines the data selection
size |By| for each class y∈Y according to the class importance
It(y) in current round t, which is defined as:

It(y) ≜

|Sy|
[
V(x,y)∼Pt,y

[
∇l(wt, x, y)

]︸ ︷︷ ︸
variance of gradient

−V(x,y)∼Pt,y

[
||∇l(wt, x, y)||2

]︸ ︷︷ ︸
variance of gradient norm

] 1
2

(2)
where |Sy| denotes the size of stored data with class y,
V(x,y)∼Pt,y

[f(x)] denotes the variance of function f(x) with
selection probability Pt,y(x) for each data sample x in class
y and || ∗ ||2 denotes the l2-norm.

Intra-Class Data Selection. To select |By| important data
samples from the stored data Sy of class y ∈ Y , we select
each sample (x, y) with probability proportional to its sample
importance It(x, y), which is defined as:

It(x, y) ≜
∣∣∣∣∇l(wt, x, y)

∣∣∣∣
2︸ ︷︷ ︸

gradient norm

. (3)

Theoretical Analysis. To demonstrate the theoretical opti-
mality of C-IS, we first present Theorem 1 and Lemma 1 to
analyze the impact of training data batch on model training
performance as well as the sub-optimality of state-of-the-art
IS in data batch selection. Further, we present Theorem 2 and
Lemma 2 to demonstrate the optimality of our proposed C-IS
in improving model training performance.

Previous studies [20], [21] have demonstrated a negative
correlation between the gradient variance of the training data
batch B and model training performance, where the perfor-
mance of model with parameter w is quantified by its distance
to the optimal parameter w∗ (i.e. ||w−w∗||22). Therefore, the
model training performance in round t can be measured by the
decrease in the distance to w∗ from the initial model parameter
wt to the updated model parameter wt+1:
Theorem 1 (Training Performance Measurement [20], [21]).
The model training performance in round t is negatively
correlated with the gradient variance of the training data
batch B selected by data selection strategy Pt:
EB∼Pt

[
||wt−w∗||22 − ||wt+1−w∗||22︸ ︷︷ ︸

reduction in distance to w∗

]
=−η2

t · VB∼Pt

[
∇L(wt,B

]︸ ︷︷ ︸
optimized through Pt

+ 2ηt · (wt−w∗)⊤∇L(wt,P)− η2
t ||∇L(wt,P)||22︸ ︷︷ ︸

fixed by initial model parameter wt in each round t

,

where VB∼Pt
[∇L(wt,B)] denotes the gradient variance of B.

Accordingly, IS proposed to minimize such variance and
maximize training performance by optimizing the selection



probability of each data sample, i.e. Pt(x, y). However, we
identify in Lemma 1 that IS potentially assumes that each data
sample in the training data batch is independently selected, re-
sulting in optimal sample-level data selection but sub-optimal
batch-level data selection for mini-batch SGD.

Lemma 1 (Optimal Sample-Level Selection). To minimize the
gradient variance of selected data batch B, IS computes the
optimal selection probability P ∗

t for each data sample (x, y):

P ∗
t (x, y) ≜ argmin

Pt

VB∼Pt

[
∇L(wt,B)

]
= argmin

Pt

1

|B|V(x,y)∼Pt

[
∇l(wt, x, y)

]
(a)

=
∣∣∣∣∇l(wt, x, y)

∣∣∣∣
2
/

∑
(x′,y′)∈S

∣∣∣∣∇l(wt, x
′, y′)

∣∣∣∣
2
. (b)

Proof. We observe that Eq.(a) implicitly assumes an indepen-
dent selection process for each data sample (x, y) in data
batch B. Eq.(b) was induced by previous IS work [20], [21]
according to Cauchy-Schwarz inequality.

To analyze the sub-optimality of IS in on-device settings and
provide theoretical insight for designing optimal batch-level
data selection strategy, we decompose the gradient variance
of the selected data batch into three terms in Theorem 2.
Theorem 2 (Gradient Variance Decomposition). The gradient
variance of data batch B selected from candidate dataset
S using selection strategy Pt can be decomposed into the
weighted sum of terms αy, βy and γy for each class y∈Y:

VB∼Pt

[
∇L(wt,B)

]
=

∑
y∈Y

αy · (βy−γy),where αy =
|Sy|2

|S|2 · |By|
,

βy=
∑

(x,y)∈Sy

∣∣∣∣∇l(wt, x, y)
∣∣∣∣2

|Sy|2 · Pt,y(x)
, γy=

∣∣∣∣∣∣E(x,y)∈Sy

[
∇l(wt, x, y)

]∣∣∣∣∣∣2,
where Sy⊆S and By⊆B are the candidate data and selected
data for each class y ∈ Y .

Proof. The detailed proof please refer to Appendix VI.

We identify that the gradient variance of the selected data
batch is composed of three terms of each class y: 1) αy

is impacted by batch size allocation |By| across classes and
the other two terms, 2) βy is determined by intra-class data
selection strategy Pt,y , and 3) γy is a constant that varies for
different classes. As a result, traditional IS can be regarded
as conducting optimal intra-class data selection to minimize
βy , but executing sub-optimal inter-class batch size allocation
based on solely βy rather than (βy − γy). Furthermore, the
overlooked term −αyγy can become significant for on-device
settings with limited memory, as αy increases with smaller
batch sizes. This is also verified by our empirical results in
Fig. 5(a), which indicates that 1) the gradient variance gap
between existing IS and our proposed C-IS becomes wider
with smaller batch sizes and 2) C-IS consistently achieves the
optimal performance with varying batch sizes.

To optimize on-device model training performance, we
propose a new optimal batch-level data selection strategy C-
IS, which keeps using IS for optimal intra-class data selection

while taking the integral term (βy − γy) into consideration
when allocating batch size to different classes y ∈ Y .
Lemma 2 (Optimal Batch-Level Selection). To maximize the
training performance of mini-batch SGD, given batch size |B|
and dataset Sy for each class y∈Y , the optimal selection size
for each class (i.e. |By|∗) and the optimal selection probability
for each sample within the class (i.e. P ∗

t,y(x)) are:

|By|∗ ∝ It(y), P
∗
t,y(x) ∝ It(x, y),

where It(y) and It(x, y) are the class importance and sample
importance defined in Eq.(2) and Eq.(3), respectively.
Proof. According to our previous analysis, term βy for each
class y∈Y is uniquely determined by its intra-class data selec-
tion strategy Pt,y while term γy is a fixed value. Therefore, we
can minimize the overall gradient variance as follows: 1) De-
rive the minimal β∗

y by optimizing Pt,y , which can be directly
solved using Cauchy-Schwarz inequality. 2) Given (β∗

y−γy)
for each class, minimize the overall objective

∑
y αy(β

∗
y−γy)

by optimizing |By|, the analytical expression of which can also
be computed through Cauchy-Schwarz inequality.

Intuitive Understanding. The sample importance It(x, y)
in Eq.(3) is exactly the norm of sample gradient over model
parameters, reflecting the contribution of each sample to
parameter update. The class importance It(y) in Eq.(2) essen-
tially quantifies the overall diversity of each class, (i.e. gradient
variance minus gradient norm variance). Higher class impor-
tance indicates that data samples within this class have diverse
gradients but similar gradient norms. Naturally, more samples
are needed to thoroughly represent the gradient distribution of
such class. However, conventional IS distributes batch size to
each class solely based on average gradient norm, focusing
on classes with high gradient value rather than diversity. A
simple example is provided in Fig. 4 for better comparison,
where IS will select the same number of samples from classes
1 and 2 but C-IS will select more samples from class 1 by
considering variance, which is obviously more reasonable.

Practical Implementation. For on-device implementation,
we propose to substitute the gradient of each data sample over
entire model parameters with the gradient over only last model
layer, which avoids the cumbersome backpropagation process
and saves computation and memory costs. Such simplification
relies on the phenomenon that partial model gradient can re-
flect the trend of full model gradient, as analyzed theoretically
and empirically by existing works [27], [29], [38].

C. Coarse-Grained Data Filter

While C-IS enables identifying the data batch with the
highest effectiveness on model performance improvement, it
also incurs substantial delay due to calculating the accurate
data importance (i.e. gradient and its norm) for each streaming
data. A straightforward remedy is to reduce the frequency of
importance computation, which in turn constrains the size of
candidate data for C-IS and compromises its effectiveness.
Inspired by the billion-scale item ranking process of online
recommendation system [39], Titan leverages a two-stage
architecture to guarantee both efficiency and effectiveness.
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Fig. 5. Preliminary experiments on CIFAR-10 dataset and different models with learning rate 0.1 to support some claims.

Specifically, Titan introduces an additional stage of coarse-
grained filter and designs two heuristic metrics to filter out a
candidate dataset that could facilitate the processes of inter-
class batch size allocation and intra-class data selection in the
fine-grained selection (i.e., C-IS).
1) Representativeness: To enable an accurate measurement
of class importance during inter-class batch size allocation,
the filtered data is expected to represent the characteristics
of the majority of data samples in each class. Therefore, the
representativeness of each data(x, y) can be measured by its
closeness to the class centroid in feature space:

Rep(x, y) = −
∣∣∣∣∣∣fw(x)− EP(x′|y)

[
fw(x

′)
]︸ ︷︷ ︸

class y′s centroid

∣∣∣∣∣∣2
2
,

where fw(x) denotes the feature extracted by current model
w and P(x′|y) denotes the data distribution of class y.
2) Diversity: To identify more high-importance data samples,
the filtered data needs to be diverse enough to cover the data
distribution. Therefore, the diversity of each data (x, y) can
be quantified as its average distance to the other data within
the same class in the feature space:

Div(x, y) = EP(x′|y)

[∣∣∣∣fw(x)− fw(x
′)
∣∣∣∣2

2

]
=
∣∣∣∣fw(x)∣∣∣∣22+EP(x′|y)

∣∣∣∣fw(x′)
∣∣∣∣2

2
−2

〈
fw(x),EP(x′|y)

[
fw(x

′)
]〉

.

We evaluate the impact of coarse-grained filter on C-IS’s
ability in reducing gradient variance in Fig. 5(b), where A+B
denotes leveraging A to filter out 30 candidate data samples
out of 100 samples and employing B to further select 10
samples as data batch. The result shows that compared with
the ideal case of performing C-IS on all data, coarse-grained
filter can reduce the candidate data size by 70% with less than
3% degradation of gradient variance reduction degree.

Practical Implementation. For efficient implementation
of coarse-grained filter, Titan only needs to dynamically
maintain two running-sum estimators for average feature
EP(x′|y)

[
fw(x

′)
]

and average feature norm EP(x′|y)
∣∣∣∣fw(x′)

∣∣∣∣2
2

using each streaming data (x, y). Based on these estimators,
Titan could realize online coarse-grained filtering by buffering
data with the highest Rep(x, y)+Div(x, y). For the feature
extraction function fw(x), we propose to input the raw data
x into the first few network layers of model w and regard the
layer outputs as features, which is according to our empirical
observation that 1) the features extracted by shallow layers are
sufficient to filter out an effective candidate data for subsequent

fine-grained data selection, and 2) forward pass through a
few model layers only introduces minor latency and memory
footprint. A detailed empirical analysis is presented in §IV-C.

D. Pipeline Design
Although the two-stage architecture of Titan achieves

higher time-efficiency, the wall-clock time per training round
still increases significantly due to the model dependency and
resource preemption between data selection and model update:
1) Model dependency: As data selection relies on the latest
model parameter to compute the accurate importance of each
sample and class, the processes of model update and data
selection have to be executed alternately and sequentially.
2) Resource preemption: The limited computing resource is
shared and preempted by data selection and model update,
which will slow down the original model update process.

Titan overcomes the above challenges by leveraging a
pipeline design to enable the co-execution of model update and
data selection. To eliminate model dependency, Titan proposes
a simple but effective “one-round-delay” scheme, where each
model parameter wt is updated by the data batch selected in
the previous round using the slightly outdated model wt−1.
Such approximation enables the co-execution of parameter up-
date for the current round and data selection for the next round,
and its feasibility is supported by our observation in Fig. 5(c)
that per-sample importance (i.e. gradient norm) typically does
not change significantly in consecutive training rounds. To
avoid resource preemption, Titan offloads the data selection
process to commonly seen idle computing resources. Despite
that mobile devices are typically equipped with multiple types
of computing resources (e.g. CPU, GPU and NPU), current
devices mainly use one type of resource type for parameter
update, due to the high synchronization overhead of sharing
each layer’s outputs and gradients across different hardware
per each parameter update [15], [19]. By offloading only data
selection to other available computing resource, Titan prevents
its resource conflict with model update and incurs low cost by
synchronizing model parameters and the small selected data
batch only once per model update. A breakdown analysis of
the system cost is provided in Fig. 6 in §IV-C.

IV. EVALUATION

We first introduce our experiment setup (§IV-A). Then
we present the overall performance of Titan (§IV-B) and
conduct component-wise analysis (§IV-C). Further, we test the
applicability of Titan to different scenarios (§IV-D).



A. Experiment Setup

Tasks, Datasets and Models. To demonstrate Titan’s gen-
erality, we evaluate it on three typical mobile computing tasks
with three data modalities and six model structures:
1) Image Classification (IC): CIFAR-10 [36] consists of
60, 000 images of 10 objects. We train four representative
ML models for this task, including the classic dense model
AlexNet [40], lightweight models MobileNetV1 [41] and
SqueezeNet [42] as well as a larger model ResNet50 [43].
2) Audio Recognition (AR): Google Speech Commands [44]
includes 100, 000 sound files of 20 commands collected from
2, 000 users, and we train ResNet34 [43] for this task.
3) Human Activity Recognition (HAR): HARBOX [45] con-
tains IMU data collected from 6 activities of 121 users.
According to previous work, we resample with a sliding
time window of 2s at 50Hz and obtain 34, 115 data samples
with 900-dimension features. An MLP [46] with two fully-
connected layers and a SoftMax layer is trained for this task.

Hardware Setup. We implement Titan framework on the
real-world mobile platform NVIDIA Jetson Nano [47] with
4GB RAM, 4 A57 CPU cores and a Maxwell GPU, which has
similar hardware and running environment with mainstream
devices [48], [49]. For pipeline implementation, Titan forks
three processes using different computation hardware2: Pro-
cess 1 conducts coarse-grained filtering with mobile GPU to
filter out a small candidate dataset from data streams; Process
2 executes fine-grained selection with mobile GPU to identify
the optimal data batch from the candidate data; Process 3
steadily updates the model parameter with mobile CPU using
the data batch shared by process 2.

Baselines. We compare Titan with existing cloud-side data
selection methods, including: 1) Random selection (RS) se-
lects random data for model training; 2) Importance sampling
(IS) [20] selects each training data sample according to gradi-
ent norm over the final model layer; 3) Heuristic data selection
selects training data batch according to per-sample training
loss (high loss HL [22] and low loss LL [51]), cross entropy
of the model output logits (CE [24]) or data representativeness
and diversity (OCS [25]); 4) Coreset selection (Camel [29])
greedily selects the sample that minimizes the input distance
between the currently selected data batch and entire dataset.

Evaluation Metrics. We use five metrics to evaluate the
overall performance of data selection. Final inference accuracy
denotes the test accuracy of the finally trained model. Time-
to-accuracy measures the wall-clock time required for each
method to reach the target accuracy. For simplicity, the target
accuracy is set as the final accuracy of RS. Processing latency
quantifies the time cost for processing each streaming data.
Memory and energy consumption measure the peak memory
footprint and overall energy cost of Titan framework.

2We use mobile CPU for model update and GPU for data selection as
1) CPUs train models faster than GPUs on current mobile devices [15], [16],
[50], 2) CPUs are more supported by today’s on-device training libraries [13],
and 3) using GPU for model update and CPU for data selection can be viewed
as cases with varied amounts of idle computing resources, analyzed in §IV-D.

Parameter Configuration. The default learning rates are
0.1 for AlexNet, MobileNet and SqueezeNet and 0.005 for
other larger models, reduced by a factor of 0.95 per 100
training rounds. The training batch size is 10 to satisfy the
memory constraint of common devices as elaborated in §II-B.
The velocity of on-device data stream is set to 100 samples
per training round, indicating that 10 out of 100 streaming
samples are selected as training data batch for model update
in each round. For coarse-grained filter, we use the first model
block3 for feature extraction, and set the size budget for the
buffered candidate dataset to 30 samples.

B. Overall Performance

Titan significantly reduces the wall-clock time to reach
target accuracy. Table I summarizes the time taken by
different methods to reach target accuracy, which is normalized
by the time of RS for clearer comparison. Compared with the
most lightweight baseline, Titan reduces the training time by
30−43% for IC task, 23% for AR task, and 29% for HAR task.
We also observe that most baselines have significantly longer
training time, caused by the additional delay of computing
each streaming sample’s importance and inferior improvement
in model training performance. In contrast, the data selection
strategy of Titan is theoretically guaranteed to optimize the
model performance in each round and the pipeline design
further overlaps the extra time cost, as elaborated in §IV-C.

Titan improves the inference accuracy of final model.
Table I shows that Titan achieves the highest final accu-
racy for most ML models, including AlexNet, MobileNetV1,
SqueezeNet and ResNet34, and achieves the second-best ac-
curacy on other ML models with only marginal accuracy drop
compared to the top baseline, such as 0.6% drop compared to
CE on ResNet50 and 0.8% drop compared to IS on MLP.

Titan reduces the processing time of each streaming data
to millisecond-level. As shown in Fig. 6(b), Titan achieves
the lowest processing time and highest throughput for data
importance computation, with only 4−13ms across different
model structures. The millisecond-level latency is attributed to
the time-efficiency of coarse-grained filter and facilitates the
practical deployment of Titan in common applications without
compromising the quality of real-time service.

Titan introduces marginal extra memory and energy
overhead. Fig. 6(c) breaks down the memory footprint of
Titan, indicating that the co-execution of data selection and
model update mostly incurs less than 10% memory cost
compared with original model update, such as 105MB for
AlexNet, 37MB for MobileNet, 25MB for SqueezeNet and
114MB for ResNet50. The high memory costs for AlexNet
and ResNet50 are attributed to their large parameter sizes,
and for lightweight models like MobileNet and SqueezeNet,
Titan incurs less than 40MB memory overhead due to avoiding
the cumbersome model back-propagation process. Fig. 6(d)
compares the average device power of only model training

3Current ML models typically consists of several blocks with similar
structures and each block is composed of several neural network layers.



TABLE I
OVERALL PERFORMANCE OF Titan AND BASELINES, WHERE BLUE HIGHLIGHTS THE TOP VALUE.

FOR BASELINES FAILING TO REACH TARGET ACCURACY, WE SIMPLY PRESENT THE NORMALIZED TIME OF ENTIRE MODEL TRAINING PROCESS.

Task Model Normalized Time-to-Accuracy (×) Final Model Accuracy (%)
RS IS LL HL CE OCS Camel Titan RS IS LL HL CE OCS Camel Titan

IC

AlexNet 1.00 3.25 3.98 3.98 3.59 4.06 2.07 0.70 71.2 73.5 18.2 34.3 71.6 62.3 71.3 74.5
MobileNet 1.00 3.22 3.45 3.45 3.41 3.67 1.15 0.57 69.2 69.5 17.7 13.9 69.6 38.1 68.7 75.4
SqueezeNet 1.00 3.96 3.97 3.97 3.04 4.06 2.07 0.69 76.2 73.0 18.3 45.0 78.0 40.7 75.6 79.0
ResNet50 1.00 2.32 3.14 3.14 2.20 2.18 1.11 0.66 76.5 78.0 22.3 34.9 81.7 27.3 76.8 81.1

AR ResNet34 1.00 2.04 3.14 3.14 2.96 3.19 0.81 0.77 76.0 78.7 14.7 58.8 73.2 59.4 76.5 79.8
HAR MLP 1.00 3.56 6.30 6.47 5.28 14.4 12.5 0.71 75.5 77.5 45.5 21.8 60.9 68.0 75.6 76.7
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Fig. 6. System overhead analysis of Titan, including per-round training time, processing delay of streaming data, memory footprint and energy consumption.

(i.e. RS) and Titan framework. We notice that Titan increases
the power by 20−67% because of utilizing idle computing
resources for data selection. However, the overall energy
consumption, which can be measured by power× time, is
increased by only −31% to +18% due to the model training
speedup brought by Titan. Accordingly, although Titan is
not specially designed for energy conservation, it leads to
only marginal or even reduced energy costs but achieves less
training time and higher model accuracy.

C. Component-Wise Analysis

Fine-Grained Selection. To show the individual impact of
fine-grained selection strategy C-IS, we compare the training
processes of different data selection methods in Fig. 7. Across
various model structures, C-IS consistently achieves the best
model training performance, with 5.8% increase in final accu-
racy and 1.59× reduction in training time on AlexNet, 4.8%
and 1.62× on MobileNetV1, 3.1% and 1.43× on SqueezeNet,
4.9% and 1.72× on ResNet50, which coincides the theoretical
optimality of C-IS analyzed in §III-B.

Coarse-Grained Filter. We further conduct a comparison
between individual fine-grained selection (C-IS) and Titan
with the shallowest n model blocks for feature extraction
in coarse-grained filter (Titan-n). Empirical results in Fig. 9
reveal the following results: 1) Compared with individual C-
IS, coarse-grained filter significantly reduces the processing
delay of each streaming data, achieving speedup of 32× on
AlexNet, 40× on MobileNetV1, 6.5× on SqueezeNet, and
94× on ResNet50. This enhances the generality of Titan
to applications with varied data velocities and delay-tolerant
levels; 2) The shallow features extracted by the first model
block exhibit satisfactory performance in selecting a candidate
dataset with potential high importance for fine-grained data
selection, with only 0.4% model accuracy drop in AlexNet,
0.1% in MobileNetV1, 0.8% in SqueezeNet and 0.5% in
ResNet50, compared with the ideal case of conducting C-IS on
all streaming data; 3) When leveraging more model blocks for

feature extracton, the effectiveness of Titan seems to gradually
degrade. This is because deeper model layers tend to extract
more concentrated and similar features for data samples within
the same class, making it more difficult to filter out diverse
data for intra-class data selection. Consequently, we propose
to leverage the first model block in practice for high time-
efficiency and stable training performance improvement.

Pipeline Design. To show the role of the pipeline design
in reducing time overhead and resource conflict, we visualize
the per-round time of only model training, sequential execu-
tion and co-execution of model update and data selection in
Fig. 6(a), which demonstrates that pipeline incurs negligible
time for synchronizing the model and data between different
processes compared with practical model training time.

D. Extended Experiments

To further demonstrate the generality of Titan framework,
we also evaluate its performance in scenarios of fluctuant on-
device idle computing resources and federated learning.

Fluctuant Idle Computing Resources. In practice, the
co-running applications may occupy varied proportions of
computing resources. When there exists more idle computing
resource, a larger candidate dataset can be filtered out by
coarse-grained filter to facilitate a higher-quality fine-grained
data selection process. Experimental results in Fig. 10 show
that when the candidate dataset size rises from 15 to 100,
the final accuracy of Titan is increased from 73.0−77.9%
to 76.4− 79.1% and the training time reduction also rises
from 19−25% to 25−46%. The consistent improvement in
model training performance demonstrates Titan’s robustness
to devices with varying idle computing resources.

Federated Learning. We further evaluate the performance
of Titan in a federated learning (FL) [52] setting with CIFAR-
10 and MobileNetV1, where we distribute the dataset to 50
devices following a similar non-IID class pattern with previous
work [53]. In each round, 20% devices are randomly selected
to participate in model training, which locally update the
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Fig. 7. Training curves of different data selection methods. The horizontal line denotes target accuracy, and vertical
lines indicate the required number of rounds to reach target accuracy.
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model parameters for 5 iterations and upload the parameter
update to server for model aggregation. As shown in Fig.
8, compared with the second best approach, Titan achieves
2.03% increase in final accuracy and 3.17× speedup in time-
to-target accuracy, which highlights the potential of applying
Titan to the distributed model training processes like FL.

V. OTHER RELATED WORK

In §II-C, we have provided a thorough introduction of
existing data selection approaches and here we review other
relevant works and clarify their key differences from ours.

On-Device Model Training. Recently, there has been a
trend towards moving model training from cloud servers
to the resource-constrained devices. Prior works focused on
improving the utilization of hardware resource (e.g., memory,
storage and computing resource) to enhance training efficiency,
such as optimizing memory allocation to increase training
batch size [4], [13], exploring the co-execution of multiple
types of computing resources to accelerate computation [14]–
[16], and offloading computation to cloud server [54]–[56].
However, only a few works noticed the under-utilization of on-
device data resource, which address such issue through cloud-
side data distribution estimation and model pre-training [57],
[58] before model deployment. Therefore, previous works are
orthogonal to our work and Titan is complementary to them.

Two-Stage Architecture. The design of two-stage system
has been widely adopted in industrial recommendation sys-
tem [39], [59] to recommend highly personalized items from
a vast item space in real-time. In the first stage, one or multiple
efficient retrieval models are used to produce a candidate set
that contains thousands of items from the whole item space.
Then, in the second stage, a more powerful model re-ranks
the candidate items and recommends the top few items to the
user. Such design allows for a trade-off between the system
scalability and performance. In the area of data selection,
to the best of our knowledge, we are the first to consider
leveraging the two-stage design to simultaneously enhance
the effectiveness and efficiency of data utilization to improve
model training performance.

VI. CONCLUSION

In this work, we identify that the under-utilization of on-
device data resource hinders the successful model training
process for mobile computing tasks. To address this issue,
we propose an on-device data selection framework Titan
to simultaneously achieve high effectiveness and time-and-
resource efficiency for on-device data utilization through an
optimal data selection strategy, a two-stage architecture and a
pipeline design. Extensive evaluation on real-world device and
typical mobile computing tasks demonstrate the remarkable
advantages of Titan in final model accuracy and wall-clock
training time compared with conventional cloud-side data
selection approaches, with minor additional system costs.

APPENDIX: PROOF OF THEOREM 2

We first decompose the gradient variance of the data batch
B selected from dataset S into the weighted variances of sub-
batch By selected from data-subset Sy for each class y ∈ Y:

VB∼Pt(S)[∇L(w,B)]=VB∼Pt(S)

[∑
y∈Y

|Sy|
|S| E(x,y)∈By [∇l(w, x, y)]

]
=

∑
y∈Y

|Sy|2

|S|2 VBy∼Pt,y(Sy)

[
E(x,y)∈By [∇l(w, x, y)]

]
(c)

=
∑
y∈Y

|Sy|2

|S|2 · |By|
V(x,y)∼Pt,y(Sy) [∇l(w, x, y)] (d).

Eq.(c) decomposes the overall batch selection process into sub-
processes for each class, and Eq.(d) holds because each sample
in sub-batch By is selected from Sy with strategy Pt,y . Ac-
cording to the variance definition (i.e.V[x] = E[x2]−

(
E[x]

)2
),

we can further decompose the gradient variance:



(d) =
∑
y∈Y

|Sy|2

|S|2 · |By|
·

[ ∑
(x,y)∈Sy

Pt,y(x) ·
∣∣∣∣∇l(w, x, y)

∣∣∣∣2[
Pt,y(x) · |Sy|

]2−∣∣∣∣∣∣∣∣ ∑
(x,y)∈Sy

Pt,y(x) ·
∇l(w, x, y)

Pt,y(x) · |Sy|

∣∣∣∣∣∣∣∣2
]

(e)

=
∑
y∈Y

|Sy|2

|S|2 · |By|
·
[ ∑

(x,y)∈Sy

∣∣∣∣∇l(w, x, t)
∣∣∣∣2

|Sy|2 · Pt,y(x)
−

∣∣∣∣∑(x,y)∈Sy
∇l(w, x, y)

|Sy|
∣∣∣∣2] =

∑
y∈Y

αy ·
(
βy − γy

)
.

Eq.(e) holds because in data selection, to ensure the unbiased-
ness of selected data for model convergence, each selected
sample will be weighted by 1

probability×data size to achieve
E(x,y)∼P (S)[f(x)]=

∑
(x,y)∈S P (x) · f(x)

P (x)·|S| = E(x,y)∼S [f(x)].
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