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Abstract—In modern mobile applications, users frequently
encounter various new contexts, necessitating on-device con-
tinual learning (CL) to ensure consistent model performance.
While existing research predominantly focused on developing
lightweight CL frameworks, we identify that data scarcity is a
critical bottleneck for on-device CL. In this work, we explore the
potential of leveraging abundant cloud-side data to enrich scarce
on-device data, and propose a private, efficient and effective data
enrichment framework Delta. Specifically, Delta first introduces
a directory dataset to decompose the data enrichment problem
into device-side and cloud-side sub-problems without sharing
sensitive data. Next, Delta proposes a soft data matching strategy
to effectively solve the device-side sub-problem with sparse
user data, and an optimal data sampling scheme for cloud
server to retrieve the most suitable dataset for enrichment with
low computational complexity. Further, Delta refines the data
sampling scheme by jointly considering the impact of enriched
data on both new and past contexts, mitigating the catastrophic
forgetting issue from a new aspect. Comprehensive experiments
across four typical mobile computing tasks with varied data
modalities demonstrate that Delta could enhance the overall
model accuracy by an average of 15.1%, 12.4%, 1.1% and 5.6%
for visual, IMU, audio and textual tasks compared with few-shot
CL, and consistently reduce the communication costs by over
90% compared to federated CL.

Index Terms—Continual Learning, On-Device Model Training,
Data Enrichment

I. INTRODUCTION

Machine learning (ML) models have become the indispens-
able components in modern mobile applications and services,
such as image tagging in Google Smart Lens [1], speech
recognition in Siri [2], text summarization and rewriting in
Apple Intelligence [3] and etc. In a wide range of mobile
applications, users encounter dynamic contexts in their daily
lives and exhibit varying behaviors, leading to a non-stationary
data distribution observed and collected by mobile devices.
Consequently, on-device ML models are expected to evolve
incrementally as new contextual data becomes available. This
evolution, known as continual learning (CL) [4], [5], enables
on-device ML models to gradually learn individual user pref-
erences in different contexts and behaviors, and thus becoming
more personalized and intelligent over time.
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Unlike conventional ML built on the premise of learning
static data distributions, CL involves learning from dynamic
data distributions. A significant challenge in CL is balancing
the model’s learning plasticity (i.e. ability to assimilate new
knowledge from emerging context) and memory stability (i.e.
ability to preserve past knowledge from historical contexts).
For cloud servers with abundant hardware and data resources,
many CL approaches have been proposed to address this
challenge, such as regularizing model parameter updates [6],
[7], replaying historical data [8], [9], [10] and designing
context-adaptive model architectures [11], [12], [13]. For
resource-constrained devices, previous research focused on
optimizing the usage of limited hardware resources to fa-
cilitate the efficient on-device deployment of cloud-side CL
solutions [14], [15], such as saving storage through data quan-
tization [16], [17], accelerating data loading via hierarchical
memory management [18], [19], and speeding up computation
by optimizing the allocation of hardware resources [20], [21].

Data Bottleneck on Mobile Devices. However, we identify
that the scarce data resource on mobile devices is the key
bottleneck for on-device CL. First, data scarcity is a pervasive
issue across various mobile applications. For example, for
image analysis applications, an average European citizen takes
only 4.9 photos daily [22]. For virtual assistant applications,
a mere 16% of iPhone users reports using Siri several times a
day [23]. Second, the utilization of data resources fundamen-
tally determines the performance ceiling for on-device CL,
whereas the optimization of hardware resources only influ-
ences the efficiency with which this ceiling can be reached.
On one hand, limited data resources for a single context often
results in the well-known issue of model overfitting [24], [25].
On the other hand, the inadequate data resources for both past
and new contexts exacerbate the mutual interference between
their learning processes, which impedes knowledge transfer for
new context and deteriorates the model performance on past
contexts, a phenomenon commonly referred to as catastrophic
forgetting [26], [27], [6].

Limitation of Existing Work. To tackle the challenge of
data scarcity for CL, few-shot CL and federated CL are two
representative approaches to mitigate the issues of overfitting
and catastrophic forgetting from the aspects of model initial-
ization and training algorithms (elaborated in §II-B).
(1) Few-shot CL [28], [29], [30] involves pre-training ML
models on common contexts with extensive data to capture
general knowledge, which can be transferred to new contexts
through model initialization and transfer learning techniques.
However, this approach is ineffective for on-device settings
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due to the unpredictability and diversity of upcoming user con-
texts. (2) Federated CL [31], [32] suggests leveraging a cloud
server to periodically aggregate the local models trained on
distributed devices, which mitigates the overfitting problem on
a single device and enables knowledge transfer across multiple
devices. However, the model performance and convergence
rate of federated CL are sensitive to device participation rate
and data heterogeneity across devices [33], [34], [35], leading
to high communication overhead and unstable training process
for real-world applications.

Our Motivation. The data bottleneck of mobile devices
coupled with the limitations of existing approaches motivate us
to consider leveraging the abundant cloud-side data resources
to enrich the sparse device-side data, fundamentally addressing
the data scarcity problem. As we will elaborate in §II-B,
simply increasing the training data size from 10 to 50 can
yield a 10% improvement in model accuracy compared to
the best few-shot CL approach, while incurring less than
5% communication costs compared with federated CL. The
feasibility of such a cloud-assisted data enrichment framework
is underpinned by two key observations: (1) Abundant cloud-
side data resource. Cloud servers typically possess exten-
sive datasets sourced from various channels, such as public
datasets released by organizations (e.g. ImageNet [36]), open-
source data crawled from the Internet webs (e.g. Common
Crawl [37]), crowdsourced data contributed by authorized
mobile users (e.g. DonateClient service of Huawei [38] and
learn from this app in Apple [39]). (2) Similarities among
user contexts and behaviors. Previous investigations have
demonstrated that the preferences and behaviors of different
mobile users in various contexts share similar patterns rather
than being entirely unique [40], [41], [42]. This indicates the
existence of a cloud-side data-subset that exhibits a similar
distribution with the device-side data, offering an opportunity
to enhance on-device CL performance.

Challenges. A feasible data enrichment framework for prac-
tical on-device CL needs to be private, effective and efficient,
which are challenging to be achieved simultaneously.
• Privacy vs. Efficiency. In contemporary mobile applications,
user data stored on devices is subject to stringent privacy
regulations like GDPR [43]. However, to enrich device-side
data with an optimal data-subset from cloud, one must either
upload raw user data to the cloud for precise similarity
comparison [44], or download numerous data-subsets from
cloud and conduct trial-and-error processes to identify the
appropriate data-subset [45]. Therefore, achieving efficient
data enrichment without violating user privacy is challenging.
• Effectiveness vs. Efficiency for New Context. Given the
diverse sources of cloud-side data, a randomly selected data-
subset is likely to deviate significantly from the device-side
data distribution, thereby degrading the CL performance over
personal contexts. However, to identify the data-subset with
the highest data enrichment performance for on-device CL,
the cloud server needs to evaluate an exponential number of
candidate data-subsets from the vast cloud-side dataset, which
introduces prohibitively high time complexity and compu-
tational burden. Consequently, simultaneously reaching high
effectiveness and efficiency poses another challenge.

• Effectiveness for Both Past and New Contexts. As the data
distributions of new contexts encountered by mobile users are
dynamic, independently conducting data enrichment for each
emerging context would compromise the on-device model’s
memory stability over past contexts, as the mutual interference
among different contexts’ learning processes can be escalated.
Additionally, there is a lack of theoretical analysis or insight
into the correlation between the enriched data of new context
and model performance over past contexts, which further
complicates the data enrichment problem for CL. Therefore,
designing a data enrichment strategy that is effective for both
new and past contexts is challenging.

Our Design. We propose Delta, a cloud-assisted data en-
richment framework designed for on-device CL with high pri-
vacy protection, efficiency and effectiveness. First, we provide
a generic formalization of the data enrichment problem for
on-device CL, and analyze its practical challenges concerning
user privacy and computation efficiency. Second, to mitigate
privacy concerns, we propose the construction of a compact
“directory” dataset for cloud-side data. This approach helps
to decompose the original data enrichment problem into two
sub-problems, which can be independently solved by mobile
device and cloud server without necessitating the exchange
of sensitive raw data. Third, to achieve both efficient and
effective data enrichment for each new context, we develop a
soft data matching strategy to accurately solve the device-side
sub-problem with sparse on-device data, and a theoretically
optimal data sampling scheme for cloud-side data selection,
which can be computed with a constant time complexity.
Fourth, to maintain high effectiveness across both new and past
contexts, we theoretically analyze the impact of new context’s
enriched data on model performance over all contexts, and
re-optimize cloud-side data sampling strategy from a holistic
perspective.

Contributions of this work are summarized as follows:
• We identify the data bottleneck in on-device CL for dynamic
user contexts, and explore the potential of utilizing cloud-side
abundant data to enrich device-side data.
• We formalize the data enrichment problem for on-device CL
and propose the first practical cloud-assisted data enrichment
framework that simultaneously achieves privacy protection,
effectiveness and efficiency.
• We evaluate Delta across four typical mobile computing
tasks with diverse data modalities and models, demonstrating
its broad applicability and superior performance over baselines
in overall accuracy and communication efficiency.

II. BACKGROUND AND MOTIVATION

A. On-Device Continual Learning

In mobile applications, users often encounter dynamic con-
texts and exhibit varying behaviors, leading to a non-stationary
distribution of data collected by devices. For example, mo-
bile users can encounter unseen objects, weather conditions
and digital corruptions in image analytics applications [46],
[47], experience new activities, physical conditions and device
placements in human activity recognition (HAR) applica-
tions [48], or come across articles on various topics and in
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Fig. 1: On-device continual learning pipeline.

different languages in text analysis applications [49]. These
applications necessitate timely and accurate responses from
on-device ML models to ensure high service quality, driving
the need for on-device CL. Figure 1 depicts the four stages a
new context undergoes in on-device CL.
• Context Detection: When a new context is experienced by
the user, it can be detected by mobile device through existing
human-involved or automatic approaches [50], [46], [47]. For
example, in HAR application, the former approach would
suggest users to confirm a new activity, whereas the latter
would detect a shift in sensor data distribution [50].
• Data Collection: For each new context, data samples fol-
lowing a new distribution are collected by mobile device as
training data for the subsequent on-device CL process. In
mobile applications, the data collected from an individual
user’s daily life is sparse, personalized and private, such as
photos taken by user or interactions with a virtual assistant.
• Enhancement: Prior to conducting on-device CL for a new
context, various enhancement techniques need to be applied
to mitigate the severe impact of data scarcity, such as few-
shot CL based on model initialization and federated CL
approaches based on training algorithms. Our work focuses
on the design of this stage from the data perspective.
• Continual Learning: The training data of both new and
past contexts are mixed to update the on-device model, which
has been recognized as one of the most effective methods to
assimilate knowledge from new contexts without forgetting the
knowledge of past contexts1 [19], [51], [10], [52], [18].

B. Limitation of Existing Approaches

In this section, we elaborate the limitations of existing few-
shot CL and federated CL approaches in mitigating device-side
data scarcity problem through preliminary experiments2.

Few-shot CL [29], [30], [53] proposes pretraining ML
models on base contexts with massive public data to capture
general knowledge, which is then transferred to new contexts
through transfer learning techniques. Representative methods
include: 1) knowledge distillation [53] (FS-KD), which distills
past contexts’ knowledge to the new context’s model by keep-
ing the model outputs of historical data samples unchanged,
2) robust optimization [30] (FS-RO), which constrains model
parameters within the common flat minima of all contexts’

1It is noteworthy that our data enrichment framework can also benefit other
classic CL approaches, such as parameter regularization [6], [7] and context-
adaptive model architectures [12], [11], as illustrated in §VII.

2The detailed experimental settings are introduced in §VI-A.

training objective functions, and 3) parameter freezing [29]
(FS-PF), which freezes the important parameters with high
value of the previously trained model.

However, most of these few-shot CL approaches depend on
a powerful model pre-training process, which pretrain either a
large model on data from diverse contexts to fully capture the
general knowledge, or a tiny model on a customized dataset
to learn personalized knowledge. Unfortunately, both of them
are impractical for on-device scenarios due to limited hardware
resources and unpredictable contexts. On one hand, the limited
memory and computational capabilities of mobile devices
restrict the size and capacity of deployed models, impeding
effective model pretraining over diverse data. On the other
hand, the uncertainty of future user contexts prevents the pre-
selection of a tailored data-subset for pretraining before model
deployment. Our preliminary experiments shown in Figure
2(a) reveal that the performance of few-shot CL declines
significantly without prior information on user contexts, with
model accuracy reduction ranging from 8.6−15.3% for FS-PF,
1.9−7.9% for FS-RO and 3.9−7.2% for FS-KD. In contrast,
simply increasing the training data size to 50 can outperform
all few-shot CL approaches, underscoring the potential of data
enrichment.

Federated CL [31], [32] utilizes a cloud server to periodi-
cally aggregate the parameters of models trained on distributed
devices, thereby mitigating the overfitting issue on individual
devices and facilitating knowledge transfer across multiple
devices. However, the substantial communication overheads
and unstable model training process render federated CL
impractical for mobile devices. First, the frequent exchange
of model parameters between mobile devices and the cloud
server incurs significant communication costs and prolongs
the wall-clock training time for on-device models. Second,
the model performance of federated CL is relatively sensitive
to the device participation rate (or amount) and the data
heterogeneity across devices [33], [34]. Experimental results
shown in Figure 2(b) indicate that: 1) Federated CL achieves
superior performance only when ≥ 20% devices participate
in each round of model aggregation or when more than
≥30% mobile users experience similar contexts, which can be
unrealistic in real-world settings; 2) In comparison to federated
CL, transmitting data with a suitable distribution from cloud
to each device could reach the same target accuracy with
communication costs reduced to less than 1%.

III. PROBLEM DEFINITION

In this section, we present a generic formalization of the
cloud-assisted data enrichment problem for on-device CL.
We consider a scenario where a mobile user sequentially
encounters T new contexts. Each context t = 1, . . . , T has
an underlying data distribution Dt

de and the device collects an
empirical dataset D̂t

de for training on-device model. Due to
the scarcity of user data, a similar data-subset St is expected
to be retrieved from the cloud-side dataset Dcl to enrich the
on-device empirical dataset D̂t

de and thereby enhance the CL
performance.

To assess the effectiveness of data enrichment, we first
define a metric to evaluate the similarity between two datasets
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(a) Performance of few-shot CL approaches without (■) and with (□) prior
information on user contexts, and performance of vanilla CL with different
amount of available training data (Vanilla-n×).
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(b) Communication cost and accuracy of federated CL with varying
device participation rates and data heterogeneity degree (Fed-p denotes
that p×100% devices hold data from different contexts).

Fig. 2: Preliminary experiments on image classification task to illustrate the limitations of existing solutions.

in terms of their impacts on the model training process. In
on-device CL, model parameters are typically fine-tuned by
on-device data via gradient descent methods. Therefore, the
similarity between two datasets D1 and D2 with respect to the
training process of model θ can be quantified by the maximal
difference between the average gradients of D1 and D2 within
a nearby parameter space {θ′|∥θ′−θ∥≤ ϵ}:

Sim(D1,D2|θ) ≜ − max
∥θ′−θ∥≤ϵ

∣∣∣∣∇L(D1, θ
′)−∇L(D2, θ

′)
∣∣∣∣, (1)

where L(D, θ) = E(x,y)∈D
[
l(x, y, θ)

]
denotes the expected

loss of model θ over dataset D. A high similarity between
two datasets D1 and D2 implies their comparable performance
in updating model parameters for multiple steps, resulting in
similar impacts on on-device model training.

Problem Formulation. For each new context t, the cloud
server aims to select the most similar data-subset St,∗ ⊆Dcl
to update the current on-device model θt−1 in a similar way
with the device-side underlying data distribution Dt

de, which
means that St,∗ and Dt

de should exhibit high similarity as
measured by the metric in Equation (1). Consequently, the
data enrichment problem can be formally expressed as:

St,∗ = argmax
St⊆Dcl,|St|≤B

Sim(St,Dtde | θt−1)

≈ argmax
St⊆Dcl,|St|≤B

Sim(St, D̂tde | θt−1),
(2)

where B represents the maximum allowable size of the se-
lected data-subset and is constrained by the communication
cost budget of each device. This formulation enables the
device to enhance model training performance by expanding
the training data from the collected dataset D̂t

de to the enriched
larger-scale dataset St, while ensuring that the enriched data
follows a similar distribution.

Practical Challenges. Directly solving the data enrichment
problem in Equation (2) brings severe privacy concerns for
mobile users and high computational burden for cloud server.
First, the mobile device needs to upload both the current model
θt−1 and raw user data D̂t

de to the cloud server, which poses
a severe breach of user privacy. Second, the cloud server
has to compute the similarity score Sim(St, D̂t

de|θt−1) for
every possible data-subset St ⊆ Dcl, |St| ≤ B, resulting in
exponential computation complexity.

Fig. 3: Design Rationale of Delta.

IV. FRAMEWORK DESIGN

Delta incorporates three key components to render data
enrichment systematically practical: the construction of a
directory dataset to address privacy concerns (§IV-A), device-
side soft data matching strategy coupled with a cloud-side data
sampling scheme to efficiently and effectively enrich data for
new contexts (§IV-B), and a re-optimization of the cloud-side
data sampling to further enhance its effectiveness across both
past and new contexts (§IV-C). Each component is inspired
and supported by theoretical analysis presented in §V and the
overall design rationale is illustrated in Figure 3.

A. Directory Dataset Construction

To address privacy concerns, Delta introduces the concept
of “directory” dataset, which facilitates decomposing the data
enrichment problem (2) into two sub-problems, and allows
the device and cloud to collaboratively solve the sub-problems
without the need to share raw user data.

Design Rationale. Inspired by the directory structures in
storage systems [54], Delta constructs a compact directory
dataset consisting of a few data samples to represent the ex-
tensive cloud-side dataset, denoted as Ddir

cl =
{
(x̄c, ȳc)

}|Ddircl |
c=1

.
This directory dataset can be pre-downloaded by mobile
devices along with the model deployment. As illustrated in
Figure 3 and supported in Theorem 1, the objective function



PREPRINT 5

(2) of the data enrichment problem can be decomposed into
the sum of two sub-objective functions: leftmargin=0.3cm,
topsep=0cm

• Sub-objective (2a): similarity between the device-side
dataset Dt

de and the weighted directory dataset wtDdir
cl ,

where each data sample (x̄c, ȳc) ∈ Ddir
cl is assigned a

weight wtc. The weight vector wt is a variable to be
optimized.

• Sub-objective (2b): similarity between the weighted di-
rectory dataset wtDdir

cl and the cloud-side data-subset St,
where St is the variable to be optimized.

These two two sub-objective functions can be optimized
sequentially and independently by the mobile device and cloud
server through the exchange of non-sensitive information:
1) Mobile device optimizes sub-objective (2a) by computing
the optimal weight wt,∗ for the directory dataset Ddir

cl to
represent the device-side data distribution Dt

de.
2) Cloud server optimizes sub-objective (2b) by searching for
the optimal cloud-side data-subset St,∗⊆Dcl to align with the
weighted directory dataset wt,∗Ddir

cl , with wt,∗ being uploaded
by the mobile device after device-side optimization.
3) Device-cloud communication involves the cloud-side direc-
tory dataset Ddir

cl and the device-side optimized weight wt,∗,
which do not involve any raw user data and thus protect
user privacy akin to classic federated learning [55]. Detailed
discussion and comparison are presented in §VIII.

Practical Implementation. The practical effectiveness of
the above decomposition process relies on an appropriate di-
rectory dataset that accurately represents the cloud-side public
dataset. While classical data clustering methods can be used
to select cluster centroids as the directory dataset elements,
we observe that directly clustering raw data samples may not
fully capture the influence of data on model training, due to
the diverse sources, wide-ranging distributions and varying
dimensions of cloud-side data. To address this issue, we take
advantage of the typical paradigm of on-device model train-
ing [56], [57], [58], where the feature extractor ϕ is pre-trained
on extensive cloud-side data for generalization ability and the
classifier ψ is trained on device-side data for personalization
performance. We propose clustering data samples (x, y)∈Dcl
based on the feature extractor outputs ϕ(x) rather than raw
input x, and selecting the cluster centroids as elements of the
directory dataset, which offers two advantages: 1) features as
model’s intermediate outputs have a consistent dimension and
are more relevant to model training than raw inputs, 2) the
features of most cloud-side data samples are already available
from the pre-training process of feature extractor, incurring
minimal additional costs.

B. Data Enrichment for New Context

While the directory dataset safeguards user privacy by
decomposing the data enrichment problem into device-side
and cloud-side sub-problems, it is non-trivial to solve them
in an effective and efficient manner due to the scarcity of on-
device data and diversity of cloud-side data. leftmargin=0.3cm,
topsep=0.cm

• Device-side ineffectiveness: Solving sub-problem (2a) re-
quires determining the optimal weight wt,∗ to align the
weighted directory dataset wtDdir

cl with the device-side
data distribution Dt

de. However, the underlying data distri-
bution is typically approximated by the sparse empirical
dataset D̂t

de stored by mobile device, which can cause
conventional gradient descent algorithms to converge to
local optima. Consequently, the derived weight becomes
overfitted to the limited empirical dataset and ineffective
in representing the device-side data distribution.

• Cloud-side inefficiency: Exactly solving sub-problem (2b)
involves evaluating the similarity score for each potential
cloud-side data subset, which requires exploring a vast
feasible region of candidate data-subsets St⊆Dcl, |S|≤
B and results in exponential computation and time com-
plexity for cloud server, leading to low efficiency.

To achieve an efficient and effective data enrichment process
for each coming context, we propose a soft data matching
strategy for mobile device to derive a representative directory
weight by fully leveraging the limited on-device data, and a
data sampling scheme for cloud server to sample an optimal
data-subset with constant time complexity.

Device-Side: Soft Data Matching. To prevent the directory
weight wt from overfitting to scarce on-device data, we
propose to assign physical meanings to wt by interpreting each
element wtc as the fraction of on-device data that exhibits high
similarity with the cloud-side cluster centroid (x̄c, ȳc)∈Ddir

cl .
Thus, for each data sample (x, y)∈ D̂t

de collected by mobile
device, its similarities with all the cluster centroids are com-
puted, and the weight of the most similar one is incremented
by one step:

c∗ = argmax
c

Sim
(
(x, y), (x̄c, ȳc) | θt−1),

wtc∗ ← wtc∗ + 1. (Hard Matching)

However, in our experiments, we observe that each on-
device data sample can exhibit high similarity with more
than one cloud-side cluster centroids, which is influenced by
the granularity of cloud-side data clustering (i.e. the number
of data clusters) during the directory construction process.
However, the “hard” matching function argmax is incapable
of capturing the correlation between one device-side sample
and multiple cloud-side clusters. Thus, we propose to employ a
“soft” matching function softmax, allowing each data sample
to contribute to the weights of more than one clusters:

∀c, wtc ← wtc + Softmax

(
Sim

(
(x, y), (x̄c, ȳc) | θt−1

)
τ

)
, (3)

where τ is a temperature hyperparameter to control the weight
increments of clusters with different degrees of similarity. As
τ → 0, softmax gradually degrades to argmax.

Cloud-Side: Optimal Data Sampling. To enhance effi-
ciency and reduce the computational overhead on the cloud
server, we propose transforming the “hard” data selection
process into a “soft” data sampling process. The key difference
is that the former seeks to find an exact data-subset St,∗ to
optimize sub-problem (2b), whereas the latter aims to compute
a data sampling policy P t,∗Dcl such that the sampled data-subset
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Fig. 4: Overall Workflow of Delta Framework. Delta serves as a plug-in for on-device continual learning.

is optimal for sub-problem (2b) in expectation:

max
St⊆Dcl

Sim(St, wtDdircl |θt−1) (Hard Selection)

⇒ max
P tDcl

ESt∼P tDcl

[
Sim(St, wtDdircl |θt−1)

]
. (Soft Sampling)

This transformation allows the cloud server to directly identify
an appropriate data-subset through data sampling policy, which
can be computed with constant time complexity.

We outline the specific operations of cloud-side data sam-
pling scheme, with theoretical foundation provided in §V-B.
The scheme involves inter-cluster size allocation and intra-
cluster data sampling, which determine how many and which
data samples to select from each cloud-side data cluster:
• Inter-cluster size allocation. Given that the size of the
selected data-subset is limited by the communication cost bud-
get, the cloud server needs to allocate distinct sampling sizes
to different data clusters to maximize the overall similarity
between the sampled data-subset and the weighted directory
dataset, i.e. sub-objective (2b). As demonstrated in Lemma 1,
the optimal sampling size |St,∗c | for each cluster Dcl,c depends
on its directory weight wtc and the dispersion degree of intra-
cluster feature distribution Ex||ϕ(x)−ϕ(x̄)||:

|St,∗c | ∝ wtc · E(x,y)∈Dcl,c

∣∣∣∣ϕ(x)− ϕ(x̄c)
∣∣∣∣. (4)

For each cluster, a higher weight suggests a higher similarity
with the device-side data for on-device CL, and a wider
feature distribution indicates the need for more data samples
to comprehensively represent the cluster .
• Intra-Cluster Data Sampling. Within each cloud-side data
cluster Dcl,c, the optimal sampling probability for each data
sample (x, y) is proportional to the feature distance between
such data sample and the cluster centroid (x̄c, ȳc):

P t,∗Dcl,c(x, y) =

∣∣∣∣ϕ(x)− ϕ(x̄c)
∣∣∣∣∑

(x′,y′)∈Dcl,c

∣∣∣∣ϕ(x′)− ϕ(x̄c)
∣∣∣∣ . (5)

Theoretically, our analysis in Lemma 1 demonstrates that this
sampling probability could maximize the expected similarity
between each data cluster Dcl,c and the corresponding se-
lected data-subset Stc, thereby optimizing sub-objective (2b)
in expectation given fixed directory weights wt. Intuitively,
this sampling strategy favors data samples that are farther
from the cluster centroid, which enhances the diversity and

informativeness of the selected data-subset while ensuring
unbiasedness and representativeness through data re-weighting
technique like importance sampling [59].

C. Data Enrichment for All Contexts

Although the previous components ensure a private, efficient
and effective data enrichment process for each new context, the
notorious issue of catastrophic forgetting (i.e. inferior memory
stability) is also exacerbated. First, as model parameters θ
continually adapt to the enriched data {Si}ti=1, the similarity
between each past context i’s enriched data Si and the
underlying distribution Di

de gradually diminishes, hindering
the use of {Si}ti=1 for retaining past knowledge. Second,
independently enriching data solely for the new context will
exacerbate the mutual interference between the model training
processes of new and past contexts.

To address these issues, we take the first step to theoretically
analyze the correlation between new context’s enriched data
and the model performance on both new and past contexts.
Further, we re-optimize the data sampling scheme for cloud
server to identify a data-subset that could contribute to the
learning processes of both new and past contexts.

Theoretical Analysis. Theorem 3 reveals that the overall
CL performance, quantified by the average loss of model over
all contexts, is primarily determined by three terms:
1) New-context representativeness, which is quantified by the
feature distance between the enriched dataset St and the
underlying data distribution of new context Dt

de.
2) Past-contexts proximity, which is measured by the feature
distance between the enriched dataset St and the underlying
data distributions of all the past contexts {Di

de}
t−1
i=1 .

3) Cross-Context Heterogeneity, which is a fixed term and
determined by the heterogeneity between the new context and
the past contexts encountered by the mobile user.
Consequently, the original intra-cluster data sampling strategy
in Equation (5) can be seen as focusing only on the first
term (i.e. effectiveness for new context), while overlooking
the second term (i.e. effectiveness for past contexts.)

Practical Implementation. Guided by the theoretical re-
sults, we further derive the analytical expression for the re-
optimized cloud-side data sampling policy, with the detailed
mathematical derivation provided in §V-C. Specifically, for
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intra-cluster data sampling, the optimal sampling probability
for each data sample is proportional to the weighted sum of
new-context representativeness and past-contexts proximity:

P t,∗Dcl,c
(x, y) ∝

∣∣∣∣∣∣ϕ(x)− ϕ(x̄c)
∣∣∣∣∣∣+ α

∣∣∣∣∣
∣∣∣∣∣ϕ(x)−

∑t−1
i=1 ϕ(wi,∗Ddircloud)

t− 1

∣∣∣∣∣
∣∣∣∣∣,

where α is a hyperparameter determined by the device to
balance the model performance over the new context and past
contexts when conducing cloud-assisted data enrichment.

D. Overall Framework

We illustrate the overall workflow of Delta framework in
Figure 4, which comprises four stages.
➊ Directory Construction: Initially, the cloud server utilizes
the pre-trained feature extractor to extract features from di-
verse datasets and performs data clustering to construct the
directory dataset. The directory dataset is then distributed to
mobile devices along with the model deployment.
➋ Soft Data Matching: For each coming new context t, the
mobile device solves sub-problem (2a) through the soft data
matching strategy outlined in Equation (3), and uploads the
optimal directory weights for both the new and past contexts
to the cloud server.
➌ Optimal Data Sampling: Upon receiving the directory
weights, the cloud server computes the analytical expressions
for the optimal data sampling scheme, which includes inter-
cluster size allocation in Equation (4) and intra-cluster data
sampling in Equation (5). The optimal data-subset is then
sampled according to the scheme and transmitted back to the
mobile device.
➍ On-Device Continual Learning: The mobile device con-
ducts CL process using the enriched datasets of both new and
past contexts. Generally, Delta serves as a plug-in module to
enhance on-device CL performance with privacy protection,
effectiveness and efficiency.

V. THEORETICAL ANALYSIS

In this section, we provide theoretical foundations for the
key components of Delta framework.

A. Theory for Directory Construction

To facilitate data enrichment as outlined in Equation (2)
without disclosing raw user data, we introduce the directory
dataset to decompose the original objective function into
two sub-objective functions. The performance of this decom-
position is theoretically guaranteed by Theorem 1, which
elucidates the relation between the original objective function
and two sub-objective functions.

Theorem 1. Given directory dataset Ddir
cl , the maximal simi-

larity between the device-side dataset Dt
de and the cloud-side

data-subset St⊆Dcl for model θt−1 can be bounded by

max
St⊆Dcl

Sim(Dtde,St|θt−1)︸ ︷︷ ︸
original objective

≥ max
wt

Sim(Dtde, wtDdircl |θt−1)︸ ︷︷ ︸
sub−objective (2a) for optimal weight

+ max
St⊆Dcl

Sim(St, wt,∗Ddircl |θt−1)︸ ︷︷ ︸
sub−objective (2b) for optimal subset

,

where wtDdir
cl represents the weighted directory dataset.

Proof. According to the definition of similarity function
Sim(), we can decompose the original objective function
by introducing an intermediary term involving a weighted
directory dataset wtDdir

cl :

max
St⊆Dcl

Sim(Dtde,St|θt−1)

=− min
St⊆Dcl

max
∥θ′−θt−1∥≤ϵ

∣∣∣∣∇L(Dcl, θ′)−∇L(St, θ′)∣∣∣∣
(a)

≥ − min
St⊆Dcl

max
∥θ′−θt−1∥≤ϵ

{∣∣∣∣∇L(Dcl, θ′)−∇L(wtDdircl , θ′)
∣∣∣∣

+
∣∣∣∣∇L(wtDdircl )−∇L(St, θ′)

∣∣∣∣}, ∀wtDdircl ,

(6)

where inequality (a) arises due to the Triangle inequality of the
norm function [60]. Next, by applying the max sum inequality,
i.e. max

x

{
f(x) + g(x)

}
≤ max

x
f(x) + max

x
g(x), we obtain:

(6) ≥− min
St⊆Dcl

{
max

∥θ′−θt−1∥≤ϵ

∣∣∣∣∇L(Dcl, θ′)−∇L(wtDdircl , θ′)
∣∣∣∣

+ max
∥θ′−θt−1∥≤ϵ

∣∣∣∣∇L(wtDdircl )−∇L(St, θ′)
∣∣∣∣}

=− max
∥θ′−θt−1∥≤ϵ

∣∣∣∣∇L(Dcl, θ′)−∇L(wtDdircl , θ′)
∣∣∣∣

− min
St⊆Dcl

max
∥θ′−θt−1∥≤ϵ

∣∣∣∣∇L(wtDdircl )−∇L(St, θ′)
∣∣∣∣

= Sim(Dcl, wtDdircl |θt−1) + max
St⊆Dcl

Sim(wtDdircl ,St).

Since the above deduction holds for any weighted directory
dataset wtDdir

cl as an intermediary term, we can minimize the
divergence between the final objective function and original
objective function by optimizing the weight wt, which leads
to the conclusion presented in Theorem 1.

This theorem shows that the optimal value of the original
objective function (2) is bounded from below by the sum
of the optimal values of the two sub-objective functions (2a)
and (2b). Consequently, Delta essentially optimizes the worst-
case performance of data enrichment for diverse contexts. The
practical gap between the original and decomposed objective
functions is determined by the representativeness of the cloud-
side directory dataset. In §VI-C, we empirically show that
a directory dataset with around 102 elements is sufficient to
represent a cloud-side dataset consisting of 106 data samples
across 102 contexts.

B. Theory for New Context’s Enrichment

To establish theoretical guarantees for the optimality of the
cloud-side data sampling scheme described in Equations (4)
and (5), we begin by introducing Theorem 2. This theorem
partitions the on-device model θ into a feature extractor ϕ
and a classifier ψ with a Lipstchiz continuity constant Lψ .
The feature extractor is typically pre-trained by cloud server
in advance and remains unchanged throughout the on-device
model training process.
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Theorem 2. The expected similarity between the weighted
directory dataset wtDdir

cl and the data-subset St selected
according to sampling scheme P tDcl is bounded by:

ESt∼P tDcl

[
Sim(St, wtDdircl | θt−1)

]
≥− ESt∼P tDcl

Lψ

∣∣∣∣∣∣E(x,y)∈St
[
ϕ(x)

]
−
∑
c

wtcϕ(x̄c)
∣∣∣∣∣∣.

where ϕ represents the feature extractor and ψ denotes the
classifier with Lψ-Lipschitz continuous gradient.

Proof. According to the definition of similarity and the Lip-
stchiz gradient continuity of the classifier, we have:

ESt∼P tDcl

[
Sim(St, wtDdircl |θt−1)

]
=ESt∼P tDcl

[
− max

∥θ′−θt−1∥≤ϵ

∣∣∣∣∇L(St, θ′)−∑
c

wtc∇l(x̄c, ȳc, θ′)
∣∣∣∣]

≥ESt∼P tDcl

[
−
∣∣∣∣∇L(St, θt−1)−

∑
c

wtc∇l(x̄c, ȳc, θt−1)
∣∣∣∣−2Lψϵ]

≥− ESt∼P tDcl

∣∣∣∣∇L(St, θt−1)−
∑
c

wtc∇l(x̄c, ȳc, θt−1)
∣∣∣∣

≥− ESt∼P tDcl
Lψ
∣∣∣∣E(x,y)∈St

[
ϕ(x)

]
−
∑
c

wtcϕ(x̄c)
∣∣∣∣.

Further, in Lemma 1, we show that the expected value of
sub-objective function (2b) (i.e., the lower bound of the
above inequality) is determined by two factors: the inter-
cluster sampling size |Stc| and intra-cluster sampling proba-
bility P tDcl,c(x, y) for each cloud-side data cluster c.

Lemma 1. The expected similarity between the sampled
data-subset St and the weighted directory dataset wtDdir

cl is
determined by each cluster c’s sampling size |Stc| and intra-
cluster data sampling probability P tDcl,c(x, y):

min
P tDcl

ESt∼P tDcl

∣∣∣∣∣∣E(x,y)∈St
[
ϕ(x)

]
−
∑
c

wtcϕ(x̄c)
∣∣∣∣∣∣

= min
|Stc|,P tDcl,c

∑
c

[
(wtc)

2

|Stc|
·

∑
(x,y)∈Dcl,c

∣∣∣∣ϕ(x)− ϕ(x̄)
∣∣∣∣2

|Dcl,c|2 · P tDcl,c(x, y)

]
Proof. According to the definition of data variance V[x] =
E ∥x∥2 − ∥E[x]∥2, we have:

argmin
P tDcl

ESt∼P tDcl

∣∣∣∣∣∣E(x,y)∈St
[
ϕ(x)

]
−
∑
c

wtcϕ(x̄c)
∣∣∣∣∣∣

=argmin
P tDcl

ESt∼P tDcl

∣∣∣∣∣∣E(x,y)∈St
[
ϕ(x)

]
−
∑
c

wtcϕ(x̄c)
∣∣∣∣∣∣2

=argmin
P tDcl

VSt∼P tDcl

[
E(x,y)∈St

[
ϕ(x)

]
−
∑
c

wtcϕ(x̄c)
]

+
∣∣∣∣∣∣ESt∼P tDcl

[
E(x,y)∈St

[
ϕ(x)

]
−
∑
c

wtcϕ(x̄c)︸ ︷︷ ︸
0 due to unbiased importance sampling

]∣∣∣∣∣∣2

=argmin
P tDcl

VSt∼P tDcl

[
E(x,y)∈St

[
ϕ(x)

]
−
∑
c

wtcϕ(x̄c)
]
,

(7)

where the unbiasedness property of importance sampling has
been proved in previous works [59], [61]. Next, we decom-
pose the overall sampling variance into the sum of weighted
variances of different clusters. In this process, the variables

transition from the overall sampling function P tDcl to the intra-
cluster sampling function P tDcl,c for each cluster.

(7) = argmin
PDt

cl

VSt∼P tDcl

[∑
c

wtc

(
E(x,y)∈Stc

[
ϕ(x)

]
− ϕ(x̄c)

)]
(b)
= argmin

Stc,P tDcl,c

∑
c

(wtc)
2 · VStc∼P tDcl,c

[
E(x,y)∈Stc

[
ϕ(x)

]
− ϕ(x̄c)

]
= argmin

Stc,P tDcl,c

∑
c

(wtc)
2

|Stc|
· V(x,y)∼P tDcl,c

[
ϕ(x)− ϕ(x̄c)

]
(c)
= argmin

Stc,P tDcl,c

∑
c

(wtc)
2

|Stc|
· E(x,y)∼P tDcl,c

∣∣∣∣ϕ(x)− ϕ(x̄c)
∣∣∣∣2

= argmin
Stc,P tDcl,c

∑
c

(wtc)
2

|Stc|
∑

(x,y)∈Dcl,c

∣∣∣∣ϕ(x)− ϕ(x̄c)
∣∣∣∣2

|Dcl,c|2 · P tDcl,c(x, y)
.

Equality (b) holds because we decompose the overall variance
of the sampled data into variances for different clusters,
and equality (c) is also due to the unbiasedness property of
importance sampling.

Finally, by leveraging Cauchy-Schwarz inequality, we can
derive the analytical expressions of the optimal data sampling
policy (i.e. |St,∗c | and P t,∗Dcl ), which can be computed directly
using the directory weights uploaded by mobile device:{

|St,∗c | ∝ wtc · E(x,y)∈Dcl,c

∣∣∣∣ϕ(x)− ϕ(x̄c)
∣∣∣∣

Pt,∗Dcl,c(x, y) ∝
∣∣∣∣ϕ(x)− ϕ(x̄c)

∣∣∣∣, ∀(x, y) ∈ Dcl,c. (8)

C. Theory for All Contexts’ Enrichment

In §IV-C, we propose to refine the cloud-side data sampling
scheme to ensure that the enriched data for new context can
contribute to the learning processes of both new and past
contexts. To achieve this, we first analyze the impact of new
context’s enriched data on the model performance over all
contexts in Theorem 3, which consists of three key terms:
representativeness to new context, proximity to past contexts
and the data heterogeneity across different contexts.
Theorem 3. In m-th training round for context t, when the
model parameters are updated from θt,m to θt,m+1 using the
enriched data St sampled by policy P tDcl , the expected reduc-
tion in model loss (i.e., improvement in model performance)
over all contexts’ data distribution D1:t

de can be bounded by:

ESt∼P tDcl

[
L(D1:t

de , θ
t,m+1)− L(D1:t

de , θ
t,m)︸ ︷︷ ︸

loss reduction in m−th model update

]

≤
1

2
(Hη2 − η)Lψ VSt∼P tDcl

[
ϕ(Dtde)− ϕ(St)

]
︸ ︷︷ ︸

representativeness to new context t

+

ηLψ

2
VSt∼P tDcl

[
ϕ(D1:t−1

de )−ϕ(St)
]

︸ ︷︷ ︸
proximity to past contexts 1∼t−1

+
ηLψ

2

∣∣∣∣ϕ(Dtde)−ϕ(D1:t−1
de )

∣∣∣∣2︸ ︷︷ ︸
heterogeneity across contexts

,

where Vx[f(x)] denotes the variance of function f(x) and we
assume that the commonly used loss functions are H

2 -smooth
similar with previous works.

Proof. First, we decompose the overall performance improve-
ment of on-device model in the m-th round into the improve-
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ments over past and new contexts by using the H
2 -smooth

property of the loss functions:

L(D1:t
de , θ

t,m+1)− L(D1:t
de , θ

t,m)

≤
〈
∇L(D1:t

de , θ
t,m), θt,m+1 − θt,m

〉
+

H

2

∣∣∣∣θt,m+1−θt,m
∣∣∣∣2

=
〈
∇L(D1:t

de , θ
t,m),−η∇L(St, θt,m)

〉
+
Hη2

2

[
∇L(St, θt,m)

]2
(d)
=
〈
∇L(D1:t−1

de , θt,m) +∇L(Dtde, θt,m),−η∇L(St, θt,m)
〉

+
Hη2

2

∣∣∣∣∇L(St, θt,m)
∣∣∣∣2

=− η
〈
∇L(Dtde, θt,m),∇L(St, θt,m)

〉
+
Hη2

2

∣∣∣∣∇L(St, θt,m)
∣∣∣∣2

− η
〈
∇L(D1:t−1

de , θt,m),∇L(St, θt,m)
〉
,

(9)
where equality (d) is derived by decomposing the overall
training loss function into loss functions of past contexts 1∼ t
and new context t.

Then, we transform the relationship between enriched train-
ing data St and on-device empirical data Dde from a mul-
tiplicative form to a difference form to better analyze the
impact of data sampling policy on model training performance.
This can be achieved by leveraging the classic equalities of
−ab = 1

2 [(a−b)
2−a2−b2]:

(9) =
η

2

[∣∣∣∣∇L(Dtde, θt,m)−∇L(St, θt,m)
∣∣∣∣2−∣∣∣∣∇L(St, θt,m)

∣∣∣∣2
−
∣∣∣∣∇L(Dtde, θt,m)

∣∣∣∣2]+ Hη2

2

∣∣∣∣∇L(St, θt,m)
∣∣∣∣2

+
η

2

[∣∣∣∣∇L(D1:t−1
de , θt,m)−∇L(St, θt,m)

∣∣∣∣2
−
∣∣∣∣∇L(St, θt,m)

∣∣∣∣2 − ∣∣∣∣∇L(D1:t−1
de , θt,m)

∣∣∣∣2]
=
η

2

∣∣∣∣∇L(Dtde, θt,m)−∇L(St, θt,m)
∣∣∣∣2 − η

2

∣∣∣∣∇L(Dtde, θt,m)
∣∣∣∣2

+
(Hη2

2
− η
)∣∣∣∣∇L(St, θt,m)

∣∣∣∣2 − η

2

∣∣∣∣∇L(D1:t−1
de , θt,m)

∣∣∣∣2
+

η

2

∣∣∣∣∇L(D1:t−1
de , θt,m)−∇L(St, θt,m)

∣∣∣∣2.
(10)

Next, we aim to analyze the impact of new context’s
enriched data St on the overall model training performance
across all contexts D1:t

de .Since the enriched data St is sam-
pled from the cloud-side dataset Dcl with uncertainty, we
focus on the training loss reduction in expected cases, i.e.
ESt∼P tDcl

[(10)]. By decomposing the term
∣∣∣∣∇L(St, θt,m)

∣∣∣∣
using the equality b2=(a−b)2−a2+2ab, we can obtain:

ESt∼P tDcl
[(10)]

=ESt∼P tDcl

[η
2

∣∣∣∣∇L(Dtde, θt,m)−∇L(St, θt,m)
∣∣∣∣2

+
(Hη2

2
− η
)(∣∣∣∣∇L(Dtde, θt,m)−∇L(St, θt,m)

∣∣∣∣2
−
∣∣∣∣∇L(Dtde, θt,m)

∣∣∣∣2 + 2
〈
∇L(Dtde, θt,m),∇L(St, θt,m)

〉)
+

η

2

∣∣∣∣∇L(D1:t−1
de , θt,m)−∇L(St, θt,m)

∣∣∣∣2
− η

2

∣∣∣∣∇L(D1:t−1
de , θt,m)

∣∣∣∣2 − η

2

∣∣∣∣∇L(Dtde, θt,m)
∣∣∣∣2].

Due to the unibasedness property of cloud-side sampling
policy, we have the following approximation:

ESt∼P tDcl

[
∇L(St, θt,m)

]
=∇L(wtDdircl , θt,m) ≈ ∇L(Dtde, θt,m),

which further simplifies the expectation of Eq. (10):

ESt∼P tDcl
[(10)]

=ESt∼P tDcl

[1
2

(
Hη2 − η

)∣∣∣∣∇L(Dtde, θt,m)−∇L(St, θt,m)
∣∣∣∣2

+
(Hη2

2
− η
)∣∣∣∣∇L(Dtde, θt,m)

∣∣∣∣2
+

η

2

∣∣∣∣∇L(D1:t−1
de , θt,m)−∇L(St, θt,m)

∣∣∣∣2
− η

2

∣∣∣∣∇L(D1:t−1
de , θt,m)

∣∣∣∣2 − η

2

∣∣∣∣∇L(Dtde, θt,m)
∣∣∣∣2]

(e)

≤ESt∼P tDcl

[1
2

(
Hη2 − η

)∣∣∣∣∇L(Dtde, θt,m)−∇L(St, θt,m)
∣∣∣∣2

+
η

2

∣∣∣∣∇L(D1:t−1
de , θt,m)−∇L(St, θt,m)

∣∣∣∣2].
The inequality (e) holds due to the typically small learning
rate η and non-negative property of the norm function.

Finally, by leveraging the Lipschitz property of feature
extractor ψ and the definition of variance , we have:

ESt∼P tDcl
[(10)] ≤ESt∼P tDcl

[Lψ
2

(
Hη2 − η

)∣∣∣∣ϕ(Dtde)− ϕ(St)
∣∣∣∣2]

+ ESt∼P tDcl

[ηLψ
2

∣∣∣∣ϕ(D1:t−1
de )− ϕ(St)

∣∣∣∣2]
=
Lψ
2

(
Hη2 − η

)
VSt∼P tDcl

[
ϕ(Dtde)− ϕ(St)

]
+

ηLψ
2

VSt∼P tDcl

[
ϕ(D1:t−1

de )− ϕ(St)
]

+
ηLψ
2

∣∣∣∣∣∣ESt∼P tDcl

[
ϕ(D1:t−1

de )− ϕ(St)
]∣∣∣∣∣∣2

=
Lψ
2

(
Hη2 − η

)
VSt∼P tDcl

[
ϕ(Dtde)− ϕ(St)

]
+

ηLψ
2

VSt∼P tDcl

[
ϕ(D1:t−1

de )− ϕ(St)
]

+
ηLψ
2

∣∣∣∣ϕ(D1:t−1
de )− ϕ(Dtde)

∣∣∣∣2

Building on this analysis, we observe that to improve the
overall CL performance and reduce the model loss across all
contexts, the cloud-side sampling scheme P tDcl should take
both the representatievess to new context and the proximity
to past contexts into consideration. From a theoretical per-
spective, we further derive the analytical expression of the
re-optimized data sampling scheme P t,∗Dcl in Lemma 2.
Lemma 2. To optimize the model performance on the overall
data distribution of all encountered contexts, the intra-cluster
data sampling probability P t,∗Dcl needs to be refined as:

P t,∗Dcl(x, y) ∝
√∣∣∣∣ϕ(x)− ϕ(x̄c)

∣∣∣∣2+α
∣∣∣∣ϕ(x)− ϕ(D1:t−1

de )
∣∣∣∣2,

where α= 1
Lψη−1 can be regarded as a hyper-parameter to

balance the model performance over new and past contexts.

VI. EVALUATION

A. Experimental Setup

Tasks, Datasets and Models. To demonstrate Delta’s
broad applicability, we evaluate Delta on four typical mobile
computing tasks with diverse data modalities, model structures
and categories of user contexts (summarized in Table I).
• Image Classification (IC). The Cifar10-C dataset [62] con-
tains around 750, 000 images of 10 objects across four context
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categories: weather, noise, blur and digital corruptions. For
each context category, the dataset is processed into 5 subsets
with 2 new objects and 1 new context per subset. ResNet-
18 [63] is trained for this 10-class image classification task.
• Human Activity Recognition (HAR). HHAR [64], UCI [65],
MotionSense [66] and Shoaib [67] are four public datasets
collected from 73 users performing 6 basic activities (still,
walking, upstairs, downstairs, jogging, bike) with 5 device
placements (pocket, belt, arm, wrist, waist). For each context
category, the dataset is processed into 6 subsets with 1 new
activity in a new context. A lightweight CNN-based model
DCNN [68] is trained for this 6-class classification task.
• Audio Recognition (AR). Google Speech command [69]
comprises 100,000 sound files of 20 commands from over
2,000 users with varied tones and environmental conditions.
The dataset is processed into 5 subsets for each context
category, each containing 4 new commands in 1 new context.
A deep neural network VGG-11 [70] is deployed for this task.
• Text Classification (TC). The NC corpus in XGLUE bench-
mark [71] is a cross-lingual understanding dataset consisting
of 50, 000 articles on 10 topics and in 5 languages (German,
English, Spanish, French, Russian). For each context category,
the dataset is processed into 5 subsets with 2 new topics and
1 new context. A transformer-based model BERT [72] is fine-
tuned for this 10-class classification task.
Note that we standardize the total number of on-device con-
texts to approximately 5 to ensure a consistent evaluation of
Delta across various tasks, models and modalities, and thus
the class number per context may vary for different datasets.

Configurations. For each task, we collect data from 50%
users (or randomly select 50% samples for IC and TC tasks)
to form the cloud-side public dataset, with the remaining data
used to simulate the on-device empirical data across different
contexts. For cloud server, data samples from different users
and contexts are mixed to reflect the typical scenario where
the specific context of each raw data sample is unknown.
For mobile device, we use 5 samples per class in each
context as empirical data for model fine-tuning, consistent
with the statistics that an average European citizen takes over
around 4.9 photos daily [22] and uses Siri several times a
day [23]. The remaining data samples are used as testing data
for each context. For Delta, the temperature τ for device-
side soft matching is set to 0.1 and the number of cloud-
side data clusters is 20×num class (i.e. 200/120/400/200
for IC/HAR/AR/TC). The hyperparameter α is set to 1.0 to
balance the effects of cloud-side data sampling on new and
past contexts. The default communication budget is set to 25
samples/class for each new context, and an in-depth analysis
of the impacts of such budget and on-device data amount is
presented in §VI-C.

Baselines. To our best knowledge, Delta is the first data
enrichment framework for on-device CL, and we compare it
against the model- and algorithm-based baselines (few-shot CL
and federated CL) and a random data enrichment baseline. 1)
Few-shot CL pre-trains model on cloud-side data in advance
to capture the general knowledge, which is transferred to
device-side new contexts through knowledge distillation [53]
(FS-KD), robust optimization [30] (FS-RO) and parameter

freezing [29] (FS-PR). 2) Federated CL leverages the cloud
server to periodically aggregate the models trained on multiple
devices per 10 local model updates. In our experiments, the
default device number is 50, except for 35 for HAR task. We
use Fed-p to denote different settings of device participation
rate p. For IC and TC tasks, the data samples from each user
are from the same context category to simulate the common
data heterogeneity across users (e.g. W/N/B/D for IC and L for
TC). The CL performance is evaluated on an independent test
dataset, constructed according to the user contexts specified by
the experimental setting. 3) Random method selects a random
cloud-side data-subset to enrich device-side empirical data.

Metrics. We assess the on-device CL performance using
four metrics. Overall performance measures the inference
accuracy of the final model across all the encountered contexts.
Learning plasticity is the average of each new context’s highest
accuracy during its learning process. Memory stability is the
average ratio between each context’s final accuracy to its
maximal accuracy. System overheads include the computation
latency, communication costs, memory footprint and energy
consumption for both the device side and cloud side.

Deployments. We use a cloud server with one NVIDIA
3090Ti GPU and one mobile platform NVIDIA Jetson
Nano [73].

B. End-to-End Performance

We begin by comparing the end-to-end performance of
Delta against the baselines across all four tasks.

Delta significantly improves the overall performance of
on-device CL. Table II summarizes the average accuracy of
the final model across all contexts. Compared with the best-
performing few-shot CL method, Delta achieves a notable
improvement, with accuracy increases of 13− 16% higher
accuracy on IC, 10−14% on HAR, 0.2−2.5% on AR, and
4−7.3% on TC. Note that Delta’s improvement on AR task
is minimal because its data heterogeneity across contexts is
relatively low (i.e. different tones and background noises) and
vanilla CL could perform well. When compared to federated
CL, Delta consistently achieves the highest overall perfor-
mance across all settings, and reduces total communication
costs by 91− 99%, demonstrating its superior effectiveness
and efficiency in enhancing CL performance. Furthermore, we
observe that for most tasks (IC, HAR and TC), all methods
tend to perform better on contexts with mixed categories (last
line of each task in Table II). The potential reason is that
data samples with different context categories exhibit a greater
distribution divergence, making it easier for the on-device
model to learn the decision boundary.

Delta enhances the learning plasticity of on-device CL
with various new contexts. Figure 5 reports the average value
of each new context’s peak accuracy during the learning pro-
cess, a metric widely adopted to assess the learning plasticity.
A key observation is that Delta consistently outperforms the
baselines across various tasks, data modalities and context
categories, demonstrating high robustness and applicability to
diverse new contexts. For example, Delta achieves around
90% and 100% accuracy for new context in IC and HAR
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TABLE I: Summary of tasks, modalities, contexts, datasets and models.

Modality Category of Dynamic Context Dataset Model(#params)
Image Object (O), Weather (W), Noise (N), Blur (B), Digital Corruption (D) Cifar10-C ResNet18(11.2M)
IMU Activity (A), Physical Condition (P), Device Placement (D) HHAR, UCI, Motion, Shoaib DCNN(17.3K)

Audio User Command (C), Tone (T), Environmental Noise (N) Google Speech VGG11(9.75M)
Text Article Topic (T), Language (L) XGLUE BERT(0.178B)

TABLE II: Summary of overall CL performance (average accuracy of final model on all contexts). We also mark Delta’s
improvement on accuracy (over few-shot CL) and reduction in communication costs (over federated CL).

Tasks Context Vanilla Few-Shot CL Federated CL Data Enrichment
∆Acc. ∆Comm.Category CL FSKD FSRO FSPF Fed0.1 Fed0.2 Fed0.4 Random Delta

IC

O+W 32.7 41.7 39.2 36.9 31.8 46.4 55.1 42.5 57.7 16.0% ↑ 93.7% ↓
O+N 31.3 36.2 35.5 32.3 31.1 40.4 45.0 35.8 50.9 14.8% ↑ 93.5% ↓
O+B 35.6 43.7 40.6 39.2 32.6 39.6 50.1 39.9 57.7 14.0% ↑ 91.1% ↓
O+D 45.0 55.1 51.5 52.2 36.9 49.0 61.7 53.7 72.3 17.1% ↑ 92.2% ↓

O+W+N+B+D 77.3 81.2 80.4 75.3 30.0 39.8 50.8 47.8 94.8 13.6% ↑ 95.3% ↓

HAR
A 52.4 55.0 52.9 48.3 54.0 60.0 61.3 58.4 69.3 14.3% ↑ 99.6% ↓

A+P 51.2 53.3 50.1 49.4 60.5 61.1 63.1 58.5 66.6 13.3% ↑ 99.8% ↓
A+P+D 81.0 80.3 78.7 71.0 62.2 66.8 70.1 61.1 90.3 10.0% ↑ 99.7% ↓

AR
C 93.6 93.5 92.9 94.2 88.1 88.3 88.5 90.4 94.3 0.2% ↑ 99.9% ↓

C+T 89.0 89.4 89.4 90.3 86.5 88.5 88.7 90.3 91.1 0.8% ↑ 99.9% ↓
C+T+N 84.7 84.8 86.2 86.9 87.5 87.7 88.0 88.5 89.2 2.3% ↑ 99.9% ↓

TC T 73.2 73.5 75.7 73.3 79.6 79.6 79.8 73.9 83.1 7.3% ↑ 99.8% ↓
T+L 77.7 82.2 80.1 80.0 84.3 84.4 84.7 79.7 86.2 4.0% ↑ 99.4% ↓

tasks regardless of context categories and fluctuates less than
3% accuracy on the other two tasks. The high accuracy for new
contexts can be attributed to the limited classes within each
new context and the enriched data from cloud side. In contrast,
the performance of baselines on new contexts is sensitive to the
diversity of context categories, such as few-shot CL dropping
from 95% to 90% on AR task and federated CL reducing from
93% to 87% on TC task. The rationale behind these is that few-
shot CL depends on the high relevance between the on-device
context and the base contexts during pre-training to facilitate
effective knowledge transfer. Similarly, the performance of
federated CL is largely influenced by the data heterogeneity
across different users’ ongoing contexts. Conversely, Delta can
consistently identify an appropriate cloud-side data-subset that
contributes to the device-side CL process, making it relatively
robust.

Delta consistently achieves a low accuracy drop on past
contexts and exhibits high memory stability. Figure 6 plots
the average ratio between each context’s final accuracy and
its peak accuracy, which indicates that Delta can maintain
over 90% relative performance for past contexts. The superior
memory stability is due to the consideration of the impact of
new context’s enriched on all contexts’ overall performance
during the cloud-side data sampling process. We also observe
that few-shot CL methods can slightly outperform Delta in
some cases. This is because they achieve significantly lower
peak accuracy for new contexts compared to Delta (e.g. a
10% accuracy gap in IC task shown in Figure 5), and thus the
accuracy drop might be less pronounced.

Delta incurs marginal system overheads for both mobile
device and cloud server, as depicted in Figure 7.
• Device-Side. The soft matching solution for sub-problem

(2a) requires computing the feature of each local data sample
and its distance to each element of directory dataset. This
results in additional latency of 23.8/1.05/ 4.25/109ms and
energy consumption of 0.49/0.30/0.42/2.47J per sample for
IC/HAR/AR/TC tasks, respectively. Moreover, Figure (7(c))
shows that soft matching process has a lower memory foot-
print than CL process for avoiding model backpropagation,
indicating that Delta does not increase peak memory usage
due to the sequential execution of Delta and on-device CL.
• Cloud-Side. The analytical solution for optimal cloud-side
data sampling can be computed within 2.56−7.15 ms using a
single 10-core Intel CPU with a memory footprint of 0.12−7.8
MB. This high computational efficiency allows for parallel
cloud-side operations for numerous devices simultaneously.
• Device-cloud Communication. For each context, the com-
munication overhead includes the uploading of device-side
directory weight, which consists of only several vectors (≤
1KB), and the downloading of cloud-side enriched data, which
requires a total of 30.4/2.89/23.5/6.43 KB for IC/HAR/ AR/TC
tasks under default settings.

C. Component-Wise Analysis

We further delve into the functionality and sensitivity of
each key component within Delta framework.

Device-Side Data Soft Matching. To illustrate the impor-
tance of soft matching strategy, we assess the performance of
Delta using various strategies to address sub-objective (2a),
including gradient descent (GD), hard matching (argmax)
and soft matching (softmax) with varying temperatures τ .
Figure 8(a) indicates that GD underperforms across most
tasks, while softmax consistently outperforms argmax. The
reasons are twofold: 1) GD is susceptible to getting trapped
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Fig. 5: Comparison of learning plasticity (maximum model accuracy for each new context during CL).
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Fig. 6: Comparison of memory stability in the settings of
mixed context categories for each task.

in local optima and leads to the overfitted directory weight; 2)
argmax fails to exploit the similarities between one device-
side sample and multiple cloud-side clusters, which is essential
when the cloud-side data is finely clustered. We also note
that the optimal τ differs by task due to varying feature
distributions, and we set τ=1.0 for stable performance.

Device-Side Data Size. Figure 8(b) shows the impact
of user data amount on Delta and baseline performances,
where we present testing loss instead of accuracy for clearer
comparison. Delta demonstrates relatively high robustness,
which is attributed to 1) the effective solution of the device-
side sub-problem with scarce on-device data through our
soft matching strategy, and 2) the substantial performance
improvement brought by the abundant cloud-side enriched
data compared to additional device-side user data. Also, we
observe that baselines show greater sensitivity to on-device
data quantity, highlighting the critical role of on-device data
enrichment and further motivates our work.

Cloud-Side Directory Dataset. Figure 9(b) plots the per-
formance of Delta with varying numbers of cloud-side data
clusters for directory dataset construction, where we replace
the cloud-side data sampling scheme with random sampling to
isolate the effects of directory dataset. We observe that a slight
increase in cluster number can improve Delta’s performance
by making directory dataset more representative and aligning
the cloud-side sub-objective (2b) more closely with the overall
objective (2). However, an excessively large cluster number
can result in numerous similar clusters, leading to the selection
of redundant data for enrichment. For stable performance, we

set cluster number per label to 20.
Cloud-Side Optimal Data Sampling. To evaluate the

importance of cloud-side optimal data sampling, we assess
Delta’s performance with different sampling schemes, in-
cluding random sampling, optimal sampling for solely new
context (α=0) and optimal sampling considering all contexts
(α = 1). Figure 9(a) indicates that optimal data sampling
for only new context improves overall model accuracy by
5.3/0.9/1.0/5.7% for IC/HAR/AR/TC tasks. Considering past
contexts further enhances accuracy by 0.9/3.9/1.5/1.7%. No-
tably, he most significant improvements are observed in IC
and TC tasks, as the visual and textual data we used are more
diverse, making random sampling less stable and effective.

Device-Cloud Communication Budget. We further eval-
uate Delta’s performance with varying sizes of cloud-side
enriched data to simulate different communication budgets.
Figure 10 shows that Delta’s performance improves signif-
icantly as the enriched data size per context increases from
50 to 100, and then stabilizes with larger data sizes. This ro-
bustness highlights Delta’s applicability for real-world devices
with diverse network conditions.

VII. RELATED WORK

Cloud-Side Continual Learning aims to train ML models
over non-stationary data streams to acquire new contextual
knowledge without forgetting past contexts. This approach
is inspired by the capability of biological neural networks
to modulate synaptic memory and plasticity in response to
dynamic inputs [7], [74]. Existing solutions include: 1) sta-
bilizing previously-learned synaptic changes by penalizing
parameter changes of the past optimal model [6], [7]; 2)
expanding and pruning synaptic connections to form new
synaptic memory via creating additional parameter space for
new contexts and re-normalizing them with past contexts [11],
[12]; 3) consolidating synaptic memory by storing the impor-
tant data of past contexts and replaying them during learning
new contexts [9], [10], where the data importance can be
measured by representativeness [75], [76], diversity [77] or
uncertainty [78]. Previous studies [48], [18], [14] have found
that data replay methods provides the best trade-off between
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model performance and system efficiency, and thus our exper-
iments are mainly conducted in this case. Delta framework
serves as a plug-in component to enrich on-device data and
enhance performance for all these methods.

Device-Side Continual Learning focuses on optimizing
the utilization of hardware resources to implement cloud-side
CL algorithms on resource-constrained devices. This includes
saving storage cost through data quantization techniques [16],
[17], reducing memory overhead through context-aware pa-
rameter sparsity [79], [13], accelerating data loading via
hierarchical memory management [18], [19], and accelerating
computation with adaptive computing resource [20], [15], [80],
[21]. However, most of these works overlook the data bottle-
neck on mobile device (scarce, personal and unpredictable user
data), and thus Delta is complementary to existing on-device
CL works focusing on hardware bottleneck.

On-Device Data Augmentation is a powerful technique
to improve model training performance by generating diverse
data from existing user data, such as leveraging geometric
and color space transformation and random erasing for visual
images [81], using techniques grounded in physical principles
for IMU signal [82], as well as employing language rule-
based transformations and synonym replacement for textual
data [83]. However, a significant limitation of data augmenta-

tion is that each data modality and task necessitates specifically
designed augmentation techniques to accommodate unique
data characteristics, making the data augmentation process
cumbersome and inefficient. Delta serves as a generally
solution to complement these works by directly expanding the
on-device available data.

VIII. DISCUSSION

Privacy Consideration. In Delta framework, the informa-
tion uploaded by devices includes the directory weights, which
excludes any raw user data and protects privacy like FL [55].
Unlike FL, where the transmitted model updates inherently
encode specific features of training data, Delta’s transmitted
weights only indicate the similarity between user data and
directory dataset (e.g. likelihood of weather conditions rather
than pixels in IC task, probability of device placement rather
than specific IMU signals in HAR task), which reveals rough
context information and makes the recovery or identification
of raw data more challenging. To further enhance privacy,
secure aggregation techniques like secure multi-party compu-
tation [84] and homomorphic encryption [85] can be integrated
into the communication and computation processes in Delta.

Comparison with FL. The intuitions behind Delta frame-
work and FL paradigm are distinct. FL aims to leverage
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device-side data to develop a global model that can general-
ize well across diverse user contexts, i.e. global knowledge
aggregation. In contrast, Delta utilizes cloud-side data to
enhance the personalization of local models for individual
user contexts, i.e. local knowledge augmentation. As a result,
the applicability of FL is primarily limited by device-side
constraints, including the vast number of devices, high par-
ticipation rates, cross-device data heterogeneity and tolerance
for communication overheads. Delta, on the other hand, seeks
to shift the limitations to the cloud, assuming that cloud server
can collect abundant public data to match different users. This
aligns with the recent success of training billion-scale models
over sufficiently diverse datasets for various tasks. Addition-
ally, when confronted with extremely rare user contexts, Delta
could still identify the most helpful and relevant cloud-side
data-subsets to provide data foundation for existing model
or algorithm-based augmentation methods. In conclusion, FL
and Delta are applicable for different scenarios and could
potentially be complementary.

IX. CONCLUSION

In this work, we explore the potential of leveraging cloud-
side abundant data resource to address the data bottleneck in
on-device CL. We formalize the data enrichment problem and
propose Delta, a private, efficient and effective cloud-assisted
data enrichment framework for on-device CL. On extensive
experiments, Delta shows superior model performance and
system efficiency across various mobile computing tasks, data
modalities and model structures.
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