

Delta: A Cloud-assisted Data Enrichment Framework for On-Device Continual Learning

Chen Gong¹, Zhenzhe Zheng¹, Fan Wu¹, Xiaofeng Jia², Guihai Chen¹

¹ Shanghai Jiao Tong University, ² Beijing Big Data Center

2024-11-18

- ² Formulation & Challenges
- ³ Design of Delta
- 4 Evaluation Results

On-device Machine Learning

Machine learning models are crucial in modern mobile apps

Image Analytics

Activity Recognition

On-device Continual Learning

Mobile users typically encounter dynamic contexts

Image Analytics

Unseen weathers, objects

Activity Recognition

今年第21号台风"康妮"的中心 已于31日14时前后 在台湾省台东县成功镇沿海登陆 中心附近最大风力有15级(48米/秒

New device positions, human activities

La brutta sorpresa della multiproprietà i Sardegna per un turista torinese Brutta sorpresa per un turista di Torino multiproprietario di una suite a Hotel Tanca Manna, ad Arzachena: arr*ia Revet*

Text Analysis

Different languages, topics, ...

On-device Continual Learning

It is critical to enable continual learning on mobile devices

continual learning

Prior Focus: System Bottleneck

Efficient on-device deployment of cloud-side approaches

Our Focus: Data Bottleneck

Scarce data resource on mobile devices is a key bottleneck

Data scarcity is a prevalent issue

Data sets the performance ceiling

Existing Solutions

Param-and-model-based methods are ineffective or inefficient

#1 Param-based: Few-Shot CL

Pre-train on Base Contexts

Transfer to Similar Contexts

#2 Model-based: Federated CL

Ineffective for Unpredictable User Contexts Inefficient for Heterogeneous Cross-Device Contexts

Existing Solutions

Param-and-model-based methods are ineffective or inefficient

#1 Param-based: Few-Shot CL

Pre-train on Base Contexts

Transfer to Similar Contexts

#2 Model-based: Federated CL

Ineffective for Unpredictable User Contexts

Inefficient for Heterogeneous Cross-Device Contexts

Fundamental Solution from Data Aspect: Enrich scarce device data with cloud data !

Observations

1) Background

2 Formulation & Challenges

- 3 Design of Delta
- 4 Evaluation Results

Problem Formulation

Select the cloud data subset most similar to device data

Developing a feasible framework face critical challenges

How to achieve privacy, efficiency and effectiveness simultaneously?

Challenge 1: Privacy and Efficiency

Developing a feasible framework face critical challenges

How to achieve privacy, efficiency and effectiveness simultaneously?

Challenge 2: Efficiency and Effectiveness

Developing a feasible framework face critical challenges

Challenge 3: Effectiveness in Continual Learning

Developing a feasible framework face critical challenges

New Context Conflicts with Past Contexts

How to achieve privacy, efficiency and effectiveness simultaneously?

Background 1 ² Formulation & Challenges **Design of Delta** 3 **Evaluation Results 4**)

Privacy: Problem Decomposition

Introduce cloud directory dataset for problem decomposition

Privacy: Device-Cloud Collaboration

Device-side Operations

Privacy: Device-Cloud Collaboration

Device-side Operations

Cloud-side Operations

w/o Sharing Raw User Data Samples

Privacy: Directory Dataset Construction

How to construct a representative directory dataset?

Efficiency: Failure of Naïve Solutions

Naïve solutions are inefficient for device and cloud sub-objectives

Scarce Data Overfitted Weight

Sub-Objective (A)

 $\max_{w^t} Sim(D_{de}^t, w^t D_{cl}^{dir} | \theta)$

Efficiency: Device-Side Soft Matching

Device-side soft matching strategy for representative weight

Efficiency: Cloud-Side Optimal Sampling

Cloud-side optimal sampling with constant time complexity

Efficiency: Cloud-Side Optimal Sampling

Cloud-side optimal sampling with constant time complexity

Effectiveness: Theoretical Analysis

Theorem. The impact of enriched data on overall continual learning performance is determined by

(1) new-context representativeness

(2) past-contexts proximity

(3) cross-context heterogeneity

$$\mathbb{E}_{\mathcal{S}^{t} \sim P_{\mathcal{D}_{cl}}^{t}} \left[\underbrace{L(\mathcal{D}_{de}^{1:t}, \theta^{t,m+1}) - L(\mathcal{D}_{de}^{1:t}, \theta^{t,m})}_{\mathcal{D}_{cl}} \right]$$

loss reduction in m-th model update

$$\leq \frac{1}{2} (H\eta^2 - \eta) L_{\psi} \mathbb{V}_{\mathcal{S}^t \sim P_{\mathcal{D}_{cl}}^t} \left[\phi(\mathcal{D}_{de}^t) - \phi(\mathcal{S}^t) \right] +$$

representativeness to new context t

$$\frac{\eta L_{\psi}}{2} \underbrace{\mathbb{V}_{\mathcal{S}^{t} \sim P_{\mathcal{D}_{cl}}^{t}} \left[\phi(\mathcal{D}_{de}^{1:t-1}) - \phi(\mathcal{S}^{t}) \right]}_{\text{proximity to past contexts } 1 \sim t-1} + \frac{\eta L_{\psi}}{2} \underbrace{\left\| \phi(\mathcal{D}_{de}^{t}) - \phi(\mathcal{D}_{de}^{1:t-1}) \right\|^{2}}_{\text{heterogeneity across contexts}},$$

Effectiveness: Theoretical Analysis

Theorem. The impact of enriched data on overall continual learning performance is determined by

(1) new-context representativeness

(2) past-contexts proximity

(3) cross-context heterogeneity

$$\mathbb{E}_{\mathcal{S}^{t} \sim P_{\mathcal{D}_{cl}}^{t}} \left[\underbrace{L(\mathcal{D}_{de}^{1:t}, \theta^{t,m+1}) - L(\mathcal{D}_{de}^{1:t}, \theta^{t,m})}_{\mathcal{D}_{cl}} \right]$$

loss reduction in m-th model update

$$\leq \frac{1}{2} (H\eta^2 - \eta) L_{\psi} \mathbb{V}_{\mathcal{S}^t \sim P_{\mathcal{D}_{cl}}^t} \left[\phi(\mathcal{D}_{de}^t) - \phi(\mathcal{S}^t) \right] + \underbrace{}$$

representativeness to new context t

Refer to our paper for more details!

Overall Workflow

Background Formulation & Challenges Design of Delta

Evaluation Setup

- Implementation
 - Device: Jetson Nano
 - Cloud: NVIDIA 3090Ti
- Baselines
 - 3 few-shot CL algorithms
 - Federated CL
 - Random data enrichment

- Tasks & Datasets
 - 4 tasks & data modalities
 - Each with ≥2 categories of ≥5 contexts
 - 4 ML models

Configurations

- Cloud data: random 50% samples
- Device data: 5 samples/context
- Directory: 20 x num. of classes

Modality	Context Category	Dataset	Model(#params)
Image	Object (O), Weather (W), Noise (N), Blur (B), Digital Corruption (D)	Cifar10-C	ResNet18(11.2M)
IMU	Activity (A), Physical Condition (P), Device Placement (D)	HHAR, UCI, Motion, Shoaib	DCNN(17.3K)
Audio	User Command (C), Tone (T), Environmental Noise (N)	Google Speech	VGG11(9.75M)
Text	Article Topic (T), Language (L)	XGLUE	BERT(0.178B)

Higher overall CL performance compared with few-shot CL:

- 15.1%, 12.4%, 1.1%, 5.6% accuracy improvement for visual, IMU, audio, textual tasks

Tasks	Context	Vanilla	Few-Shot CL			Federated CL			Data Enrichment		ΔΔαα	AComm
	Category	CL	FS-KD	FS-RO	FS-PF	Fed-0.1	Fed-0.2	Fed-0.4	Random	Delta	AACC.	
IC	O+W	32.7±1.49	41.7±1.78	39.2 ± 2.13	36.9 ± 2.87	31.8 ± 0.24	46.4 ± 1.65	55.1 ± 0.42	42.5 ± 2.42	57.7 ± 0.54	16.0% ↑	93.7%↓
	O+N	31.3 ± 1.74	36.2 ± 2.34	35.5 ± 1.65	32.3 ± 1.25	31.1 ± 0.04	$40.4{\pm}0.51$	$45.0{\scriptstyle\pm0.12}$	35.8 ± 1.00	50.9 ± 1.66	14.8% ↑	93.5%↓
	O+B	35.6 ± 0.94	43.7 ± 1.12	$40.6{\pm}0.24$	39.2 ± 0.06	32.6±0.16	$39.6{\scriptstyle\pm0.24}$	50.1 ± 0.31	39.9±1.69	57.7 ± 0.98	14.0% ↑	91.1% ↓
	O+D	45.0 ± 2.57	55.1±1.17	51.5 ± 2.66	52.2 ± 3.10	36.9 ± 0.04	$49.0{\scriptstyle\pm0.51}$	61.7 ± 0.34	53.7 ± 2.24	72.3 ± 2.27	17.1% ↑	92.2%↓
	O+W+N+B+D	77.3 ± 0.49	81.2±1.53	$80.4{\pm}0.81$	75.3 ± 0.41	30.0 ± 0.05	$39.8{\scriptstyle\pm0.71}$	$50.8{\scriptstyle\pm0.41}$	47.8 ± 6.64	$94.8{\scriptstyle\pm2.74}$	13.6% ↑	95.3% ↓
HAR	А	52.4±3.67	55.0±3.93	52.9 ± 2.55	$48.3 {\pm} 2.69$	54.0 ± 0.64	$60.0 {\pm} 0.21$	61.3 ± 0.55	58.4 ± 0.35	69.3±1.96	14.3% ↑	99.6%↓
	A+P	51.2 ± 4.53	53.3 ± 3.20	50.1 ± 3.52	49.4 ± 2.95	60.5±1.28	61.1±1.89	63.1 ± 0.85	58.5±0.75	66.6±1.78	13.3% ↑	99.8%↓
	A+P+D	81.0 ± 4.75	80.3 ± 2.35	78.7 ± 4.37	$71.0 {\pm} 4.27$	62.2±3.58	66.8±3.97	$70.1 {\pm} 4.28$	61.1±3.25	90.3 ± 5.09	10.0% ↑	99.7%↓
AR	С	93.6±0.16	$93.5 {\pm} 0.07$	92.9 ± 0.65	$94.2{\scriptstyle\pm0.28}$	88.1±1.65	88.3 ± 0.83	88.5 ± 1.78	90.4±0.19	$94.3{\scriptstyle\pm0.17}$	0.2% ↑	99.9%↓
	C+T	89.0 ± 0.41	89.4±0.57	89.4 ± 0.38	$90.3{\scriptstyle\pm0.79}$	86.5 ± 0.24	$88.5{\scriptstyle\pm0.62}$	88.7 ± 0.25	90.3±0.26	91.1±1.17	0.8% ↑	99.9%↓
	C+T+N	84.7 ± 0.64	84.8±1.52	86.2 ± 0.79	86.9 ± 0.40	87.5 ± 0.54	87.7 ± 0.31	$88.0{\scriptstyle\pm0.61}$	88.5±1.45	89.2 ± 1.60	2.3% ↑	99.9% ↓
TC	Т	73.2±2.15	73.5 ± 1.35	$75.7 {\pm} 4.07$	$73.3 {\pm} 2.56$	79.6±0.37	79.6 ± 0.19	$79.8 {\pm} 0.14$	73.9±2.69	83.1±2.26	7.3% ↑	99.8%↓
	T+L	77.7±3.19	82.2±0.29	80.1 ± 3.02	$80.0 {\pm} 1.89$	84.3 ± 0.14	$84.4{\pm}0.18$	84.7 ± 0.09	79.7±2.21	86.2±2.16	4.0% ↑	99.4% ↓

Overall Performance

Lower communication overheads compared with federated CL:

- More than 91% communication cost reduction for different tasks

Tasks	Context	Vanilla	Few-Shot CL			Federated CL			Data Enrichment		A A a a	AComm
	Category	CL	FS-KD	FS-RO	FS-PF	Fed-0.1	Fed-0.2	Fed-0.4	Random	Delta	DACC.	
IC	O+W	32.7±1.49	41.7±1.78	39.2 ± 2.13	36.9 ± 2.87	31.8 ± 0.24	46.4 ± 1.65	55.1 ± 0.42	42.5±2.42	57.7 ± 0.54	16.0% ↑	93.7% ↓
	O+N	31.3 ± 1.74	36.2 ± 2.34	35.5 ± 1.65	32.3 ± 1.25	31.1 ± 0.04	$40.4{\pm}0.51$	$45.0{\scriptstyle\pm0.12}$	35.8 ± 1.00	50.9 ± 1.66	14.8% ↑	93.5%↓
	O+B	35.6 ± 0.94	43.7 ± 1.12	$40.6{\scriptstyle\pm0.24}$	39.2 ± 0.06	32.6±0.16	$39.6{\scriptstyle\pm0.24}$	50.1 ± 0.31	39.9±1.69	57.7 ± 0.98	14.0% ↑	91.1%↓
	O+D	45.0 ± 2.57	55.1±1.17	51.5 ± 2.66	52.2 ± 3.10	36.9 ± 0.04	$49.0{\scriptstyle\pm0.51}$	61.7 ± 0.34	53.7 ± 2.24	72.3 ± 2.27	17.1% ↑	92.2%↓
	O+W+N+B+D	77.3 ± 0.49	81.2±1.53	80.4 ± 0.81	75.3 ± 0.41	30.0 ± 0.05	$39.8{\scriptstyle\pm0.71}$	$50.8{\scriptstyle\pm0.41}$	47.8±6.64	$94.8{\scriptstyle\pm2.74}$	13.6% ↑	95.3% ↓
HAR	А	52.4±3.67	55.0±3.93	52.9 ± 2.55	48.3 ± 2.69	54.0 ± 0.64	$60.0 {\pm} 0.21$	61.3 ± 0.55	58.4±0.35	69.3±1.96	14.3% ↑	99.6% ↓
	A+P	51.2±4.53	53.3 ± 3.20	50.1 ± 3.52	49.4 ± 2.95	60.5±1.28	61.1±1.89	$63.1 {\pm} 0.85$	58.5±0.75	66.6 ± 1.78	13.3% ↑	99.8%↓
	A+P+D	81.0 ± 4.75	80.3 ± 2.35	78.7 ± 4.37	$71.0 {\pm} 4.27$	62.2±3.58	66.8±3.97	$70.1 {\pm} 4.28$	61.1±3.25	90.3 ± 5.09	10.0% ↑	99.7% ↓
AR	С	93.6±0.16	$93.5 {\pm} 0.07$	92.9 ± 0.65	94.2 ± 0.28	88.1±1.65	$88.3{\pm}0.83$	88.5 ± 1.78	90.4±0.19	$94.3{\scriptstyle\pm0.17}$	0.2% ↑	99.9% ↓
	C+T	89.0 ± 0.41	89.4±0.57	89.4 ± 0.38	90.3 ± 0.79	86.5 ± 0.24	$88.5{\scriptstyle\pm0.62}$	88.7 ± 0.25	90.3±0.26	91.1 ± 1.17	0.8% ↑	99.9%↓
	C+T+N	84.7 ± 0.64	84.8±1.52	86.2±0.79	86.9 ± 0.40	87.5 ± 0.54	87.7 ± 0.31	88.0 ± 0.61	88.5±1.45	89.2 ± 1.60	2.3% ↑	99.9% ↓
TC	Т	73.2±2.15	73.5 ± 1.35	$75.7 {\pm} 4.07$	73.3 ± 2.56	79.6±0.37	79.6 ± 0.19	$79.8 {\pm} 0.14$	73.9±2.69	83.1±2.26	7.3% ↑	99.8% ↓
	T+L	77.7±3.19	82.2±0.29	80.1 ± 3.02	80.0 ± 1.89	84.3 ± 0.14	$84.4{\pm}0.18$	84.7 ± 0.09	79.7±2.21	86.2±2.16	4.0% ↑	99.4% ↓

System Scalability

Latency (ms)

- Device-Side: 1.05 109 ms/sample
- Cloud-Side: 2.56 7.15
 ms/context

Memory (MB)

- Device-Side: No increased peak memory footprint
- Cloud-Side: 0.12 7.8 MB extra memory cost

Communication (KB)

- **Upload:** ≤1**KB** for directory weights
- Download: 2.89 30.4 KB for enriched data

System Scalability

Latency (ms)

- Device-Side: 1.05 109
 ms/sample
- Cloud-Side: 2.56 7.15
 ms/context

Memory (MB)

- Device-Side: No increased peak memory footprint
- Cloud-Side: 0.12 7.8 MB extra memory cost

Communication (KB)

- **Upload:** ≤1**KB** for directory weights
- Download: 2.89 30.4 KB for enriched data

Device-side (per sample) Cloud side (per context) Cloud side (per context) More Details in Our Paper: Component-Wise Analysis, Sensitivity Analysis, Different Impacts on New and Past Contexts

Conclusion

Problem

- The data bottleneck in on-device continual learning
- Existing solutions show ineffectiveness and inefficiency

Solution

 Delta, a cloud-assisted data enrichment framework that simultaneously achieves privacy, efficiency and effectiveness

Result

• Delta shows superior continual learning performance in different tasks with varied data modalities with marginal system overheads

Conclusion

Problem

- The data bottleneck in on-device continual learning
- Existing solutions show ineffectiveness and inefficiency

Solution

 Delta, a cloud-assisted data enrichment framework that simultaneously achieves privacy, efficiency and effectivenes

Result Thank You for Your Attention !

 Delta shows superior contiched Gong tasks with varied datagongchen@sjtu.edu.cnrginal system overheads