Titan: A Two-Stage Data Selection Framework for Data-Efficient Model Training on Edge Devices

Chen Gong, Rui Xing, Zhaenzhe Zheng, Fan Wu Shanghai Jiao Tong University 2025-08-07

Outline

- Background
- ² Challenges
- 3 Titan Design
- 4 Evaluation

On-Device ML

ML models are widely deployed across various mobile apps.

On-Device ML

On-device model training is critical for personalization & privacy.

Image Analysis

Human Activity Recognition

Personalized **Weathers**

Preferred **Activities**

Different Accents

Data Bottleneck

Under-utilization of on-device data stream is a key bottleneck.

Data Bottleneck (Cont.)

Under-utilization of on-device data stream is a key bottleneck.

Limited Device Resources

(Memory, Computation, Storage)

Acc: 13%↓ **Time: 3.1x**↑

Data Bottleneck (Cont.)

Under-utilization of on-device data stream is a key bottleneck.

Key Problem: Improve on-device model training performance by prioritizing important data

Acc: 13%↓ **Time: 3.1x**↑

Outline

- 1 Background
- Challenges
- 3 Titan Design
- 4 Evaluation

Design Challenges

Achieving effectiveness and efficiency is critical but challenging.

Effectiveness:

theoretical & empirical guarantees.

Efficiency:

time & resource efficiency.

Design Challenges

Achieving effectiveness and efficiency is critical but challenging.

Effectiveness:

theoretical & empirical guarantees.

Efficiency:

time & resource efficiency.

Higher effectiveness →
accurate but costly evaluations
on more data → low efficiency

Limitations of Existing Works

Cloud-side data selection methods fail to work for device side.

> Importance Sampling (IS): select data according to gradient norms.

IS

Loss Entr RepreCam

Data Selection Methods

High evaluation latency for data stream

Limitations of Existing Works

Cloud-side data selection methods fail to work for device side.

- ➤ Importance Sampling (IS): select data according to gradient norms.
- Heuristic Selection: prioritize data with high loss, entroy, rep&div.
- Coreset Selection (Camel): choose a weighted data-subset with highest gradient similarity.

High evaluation latency for data stream

Low performance gains w.r.t. random sampling

Outline

- 1 Background
- ² Challenges
- **3** Titan Design
- 4 Evaluation

Overall Design

Goal: Exploit on-device data resources efficiently and effectively.

On-Device Data Stream

Important Training Batch

Overall Design (Cont.)

Goal: Exploit on-device data resources efficiently and effectively.

Time-Efficiency: A coarse-grained filter to filter out a small candidate dataset.

Important Training Batch

Overall Design (Cont.)

Goal: Exploit on-device data resources efficiently and effectively.

- Time-Efficiency: A coarse-grained filter to filter out a small candidate dataset.
- **Effectiveness:** A theoretically optimal data selection algorithm to maximize performance.

Overall Design (Cont.)

Goal: Exploit on-device data resources efficiently and effectively.

Important Training Batch

- Time-Efficiency: A coarse-grained filter to filter out a small candidate dataset.
- Effectiveness: A theoretically optimal data selection algorithm to maximize performance.
- Resource-Efficiency: A pipeline design to offload data selection to idle resources.

Coarse-Grained Filter

Filter streaming data via representativeness and diversity.

- Representativeness: $\operatorname{Rep}(x,y) = -\left\|f_w(x) \mathbb{E}_{\mathcal{P}(x'|y)}[f_w(x')]\right\|_2^2$, high closeness to class centroid \to preserve class-level property.
- Diversity: $\operatorname{Div}(x,y) = \mathbb{E}_{\mathcal{P}(x'|y)} \left[\left\| f_w(x) f_w(x') \right\|_2^2 \right]$ difference to other data \to reflect sample-level distribution.

Fine-Grained Selection

Select data batch with the highest performance improvement.

Theorem 1: Training performance is inversely correlated with gradient variance of the selected data.

Fine-Grained Selection (Cont.)

Select data batch with the highest performance improvement.

Pipeline Design

Execute data selection and model training in parallel.

One-Round-Delay: Model in round t is updated with data from last round, while selecting data for next round.

Pipeline Design (Cont.)

Resources

Execute data selection and model training in parallel.

Outline

- 1 Background
- ² Challenges
- 3 Titan Design
- 4 Evaluation

Setup

3 Tasks & Datasets

- Image Classification:
 - CIFAR-10 (60k images of 10 classes)
 - AlexNet, MobileNetV1, SqueezeNet, ResNet50
- **Audio Recognition:**
 - Google Speech Command (100k sound files of 20 commands)
 - ResNet35
- Human Activity Recognition:
 - HARBOX (34k IMU samples)
 - MLP

6 Baselines

- Random Sampling (RS)
- Importance Sampling (IS)
- Heuristic Selection: loss, entropy, representativeness&diversity
- Coreset Selection: Camel

Device Implementation

- Device: Jetson Nano (4GB RAM, 4 CPU cores, a Maxwell GPU)
- On-device Data: 100 samples/round to simulate high speed setting

Model Training Performance

Reduce wall-clock training time to reach target accuracy.

Task	Model	Normalized Time-to-Accuracy (×)							
		RS	IS	LL	HL	CE	OCS	Came	l Titan
IC	AlexNet	1.00	3.25	3.98	3.98	3.59	4.06	2.07	0.70
	MobileNet	1.00	3.22	3.45	3.45	3.41	3.67	1.15	0.57
	SqueezeNet	1.00	3.96	3.97	3.97	3.04	4.06	2.07	0.69
	ResNet50	1.00	2.32	3.14	3.14	2.20	2.18	1.11	0.66
AR	ResNet34	1.00	2.04	3.14	3.14	2.96	3.19	0.81	0.77
HAR	MLP	1.00	3.56	6.30	6.47	5.28	14.4	12.5	0.71

Training Speedup

- Image Task: 30%-43%
- Audio Task: 23%
- HAR Task: 29%

Maintain or improve final accuracy of on-device model.

Task	Model	Final Model Accuracy (%)							
		RS	IS	LL	HL	CE	OCS	Came	Titan
IC	AlexNet	71.2	73.5	18.2	34.3	71.6	62.3	71.3	74.5
	MobileNet	69.2	69.5	17.7	13.9	69.6	38.1	68.7	75.4
	SqueezeNet	76.2	73.0	18.3	45.0	78.0	40.7	75.6	79.0
	ResNet50	76.5	78.0	22.3	34.9	81.7	27.3	76.8	81.1
AR	ResNet34	76.0	78.7	14.7	58.8	73.2	59.4	76.5	79.8
HAR	MLP	75.5	77.5	45.5	21.8	60.9	68.0	75.6	76.7

Accuracy Improvement

- Top 1 accuracy for most models
- Top 2 accuracy for other models

System Overhead

Latency (ms)

Processing streaming data with 4-13 ms latency

Memory (MB)

Marginal extra memory footprint (≤120MB)

Power&Energy

Higher device power but lower overall energy

Extended Scenario: Federated Learning

Improve convergence rate and final accuracy of global model.

Settings: Train MobileNetV1 on cifar10 dataset non-uniformly distributed on 50 devices.

Results:

- > 2.03% increase in global model accuracy
- 3.17x speedup in number of rounds to reach convergence

Conclusion

Problem

- The data utilization bottleneck in on-device model training.
- Existing solutions show ineffectiveness and inefficiency.

Solution

• Titan, a two-stage data selection framework that simultaneously achieves efficiency and effectiveness.

Result

• Titan shows superior training performance in different tasks with varied data modalities with marginal system overheads.

Conclusion

Problem

- The data utilization bottleneck in on-device model training.
- Existing solutions show ineffectiveness and inefficiency.

Solution

• Titan, a two-stage data selection framework that simultaneously achieves efficiency and effectiveness.

Result Thank You for Your Attention!

• Titan shows superior train Chen Gong mance in different tasks with varied data modalitie gongchen@sjtu.edu.cnem overheads.