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. On-Device ML

ML models are widely deployed across various mobile apps.
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. Data Bottleneck

N_¢ Only a small portion of
streaming data is used
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. Data Bottleneck (Cont.)

Under-utilization of on-device data stream is a key bottleneck.

Key Problem: Improve on-device model training
performance by prioritizing important data
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. Design Challenges

Achieving effectiveness and efficiency is critical but challenging.
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Effectiveness:

theoretical & empirical
guarantees.
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Data Selection time & resource eff|C|ency.J
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():() Higher effectiveness —
accurate but costly evaluations
on more data — low efficiency




. Limitations of Existing Works

Cloud-side data selection methods fail to work for device side.

> Importance Sampling (/S): vy
select data according to Eog] High evaluation latency
gradient norms. 2R = \ for data stream
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. Limitations of Existing Works

Cloud-side data selection methods fail to work for device side.
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. Overall Design

Goal: Exploit on-device data resources efficiently and effectively.
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. Overall Design (Cont.)

Goal: Exploit on-device data resources efficiently and effectively.

On-Device Data Stream > Time-Efficiency: A coarse-grained filter to
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. Overall Design (Cont.)

Goal: Exploit on-device data resources efficiently and effectively.

On-Device Data stream > Time-Efficiency: A coarse-grained filter to

filter out a small candidate dataset.

SR reldle | > Effectiveness: A theoretically optimal data
= | = :*]‘:‘E: selection algorithm to maximize performance.

ﬁne-Grained L_“'T‘""I
Sdeit'on > Resource-Efficiency: A pipeline design to
gopues 8@ offload data selection to idle resources.

Important Training Batch



. Coarse-Grained Filter

Filter streaming data via representativeness and diversity.
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> Representativeness: Rep(x,y) = —wa(x) — Ep(x|y) [fw(x’)]Hz,
high closeness to class centroid — preserve class-level property.

> Diversity: Div(x, y) = Ep(x’|y) l”fw(x) —fw(x')H;]
difference to other data — reflect sample-level distribution.



. Fine-Grained Selection

Select data batch with the highest performance improvement.

_________ » Theorem 1: Training performance is inversely cor-
WX L__:L>_I<_:L__: related with gradient variance of the selected data.
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Bl Fine-Grained Selection (Cont.)

Select data batch with the highest performance improvement.

> Theorem 2: Gradient variance of data batch is

%XT** decided by inter-class size allocation and intra-
\Coarse-Grained Filter/ class sample selection — optimal selection policy.
R 1Syl Vixy) Py VIOWE % ) | =V ()b, [TV (Wi, %, ) |2 ] %
I B 51X Class Importance: [V I |
I variance of gradient variance of gradient norm
Fine-Grained Samp|e |mportance: ||Vl(wt,x,y)||2.
Selection tient
gra 1ent norm
v Fine-Grained Data Selection

%%% —_— i@ Intra-Class | Inter-Class
LN LN 1L : Y= = — ]
.'@3 N ;;, . |88 O O igi

l { > > o8 e | —>lo

<)
:_ Gradient Variance J'

1808ce0

0°% ®¢ o|ps-1 Bs-1 Bs-2
Candidate  Gradient Classified Optimal
Dataset Computation Importance Sampling  Batch




. Pipeline Design

Execute data selection and model training in parallel.

Current Round  Previous Round — » One-Round-Delay: Model in round t
LX:L__:I'?_{: LX:;__:i?_(_: is updated with data from last round,
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. Pipeline Design (Cont.)

Execute data selection and model training in parallel.

Current Round  Previous Round = > Using Idle Resources: offload data
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\Coarse Gralned F|Iter/ \Coarse Grained F|Iter/—l ces (e g., GPU, DSP, NPU)
‘1' ‘l' I— - I—dl—e— - Train Only Sequential &% Pipeline
2<_. X Resources 35
I |_’ l E 0
Fine-Grained Fine- Gramed * € 25
Selection Selectlon """ 2 | @ ‘; 3 e
815 % 7K
Update ‘woss WIS i W7 |

A\e)l(Net Mob'\ieNet SqueézeNet ResNetSO
Main @g 90% data selection cost is masked

Resources




. Outline

@ Background

(:) Challenges
@ Titan Design
Q Evaluation




. Setup

3 Tasks & Datasets
» Image Classification:

* CIFAR-10 (60k images of 10 classes)
* AlexNet, MobileNetV1, SqueezeNet,

ResNet50

» Audio Recognition:

* Google Speech Command (100k

sound files of 20 commands)
ResNet35

» Human Activity Recognition:

HARBOX (34k IMU samples)
MLP

6 Baselines

» Random Sampling (RS)

» Importance Sampling (IS)

» Heuristic Selection: loss, entropy,
representativeness&diversity

» Coreset Selection: Camel

Device Implementation

» Device: Jetson Nano (4GB RAM, 4 CPU
cores, a Maxwell GPU)

» On-device Data: 100 samples/round
to simulate high speed setting



. Model Training Performance

Reduce wall-clock training time to reach target accuracy.

Normalized Time-to-Accuracy (x)
Task | Model | o5 s LL HL CE OCS Camel Titan
AlexNet 1.00 3.25 398 398 359 406 207 0.70
IC MobileNet | 1.00 3.22 345 345 341 3.67 115 0.57
SqueezeNet | 1.00 3.96 397 397 3.04 4.06 2.07 0.69
ResNet50 1.00 232 314 314 220 2.18 1.11 0.66
AR ResNet34 1.00 2.04 314 314 29 3.19 081 0.77
HAR MLP 1.00 356 0630 647 528 144 125 0.71

>
>
>

Training Speedup
Image Task: 30%-43%
Audio Task: 23%

HAR Task: 29%

Maintain or improve final accuracy of on-device model.

Final Model Accuracy (%)

Task | Model RS IS LL HL CE OCS Camel Titan
AlexNet | 712 735 18.2 343 71.6 623 713 745
MobileNet | 69.2 695 17.7 139 69.6 381 687 75.4
1€ | SqueezeNet | 762 730 183 450 780 407 756 790
ResNet50 | 765 78.0 223 349 817 273 768 8.1
AR | ResNet3d | 760 787 147 588 732 594 765 798
HAR MLP 755 | 775 455 218 609 680 756 767

>

Accuracy Improvement
Top 1 accuracy for most
models
Top 2 accuracy for other
models




. System Overhead

Latency (ms) Memory (MB) Power&Energy
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. Extended Scenario: Federated Learnin

Improve convergence rate and final accuracy of global model.

Test Accuracy (%)
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Training Round Num. (x100)
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Settings: Train MobileNetV1 on cifarl0

dataset non-uniformly distributed on 50
devices.

Results:

> 2.03% increase in global model accuracy

> 3.17x speedup in number of rounds to
reach convergence



. Conclusion

Problem
* The data utilization bottleneck in on-device model training.
* Existing solutions show ineffectiveness and inefficiency.

Solution

* Titan, a two-stage data selection framework that simultaneously
achieves efficiency and effectiveness.

Result

* Titan shows superior training performance in different tasks with
varied data modalities with marginal system overheads.
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