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Introduction Design
Goal: Accelerate on-device model training by prioritizing Overview: During model taining, Titan uses idle resources to
limited hardware resources for important streaming data. > filter a small candidate dataset with high representativeness

and diversity (coarse-grained filter),

» optimally determine how many and which samples to select
for each data class ,

» concurrently train model using previously selected data on
the main hardware resource (pipeline design).

Challenge:

» Effectiveness: Provide both theoretical and empirical
performance guarantees for data selection.

» Efficiency: Achieve low latency and resource contention.

» Trade-off: Higher effectiveness demands more accurate but
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> Resource-Efficiency: A pipeline design to offload data

selection to idle hardware resources. Theoretical Optimality:

» Theorem 1: Model training performance is inversely correl-
m ated with the gradient variance of selected data batch.

» Theorem 2: To minimize gradient variance, the optimal sel-
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