

A Two-Stage Data Selection Framework for Data-Efficient Model Training on Edge Devices

Chen Gong, Rui Xing, Zhenzhe Zheng, Fan Wu

Introduction

Goal: Accelerate on-device model training by prioritizing limited hardware resources for important streaming data.

Challenge:

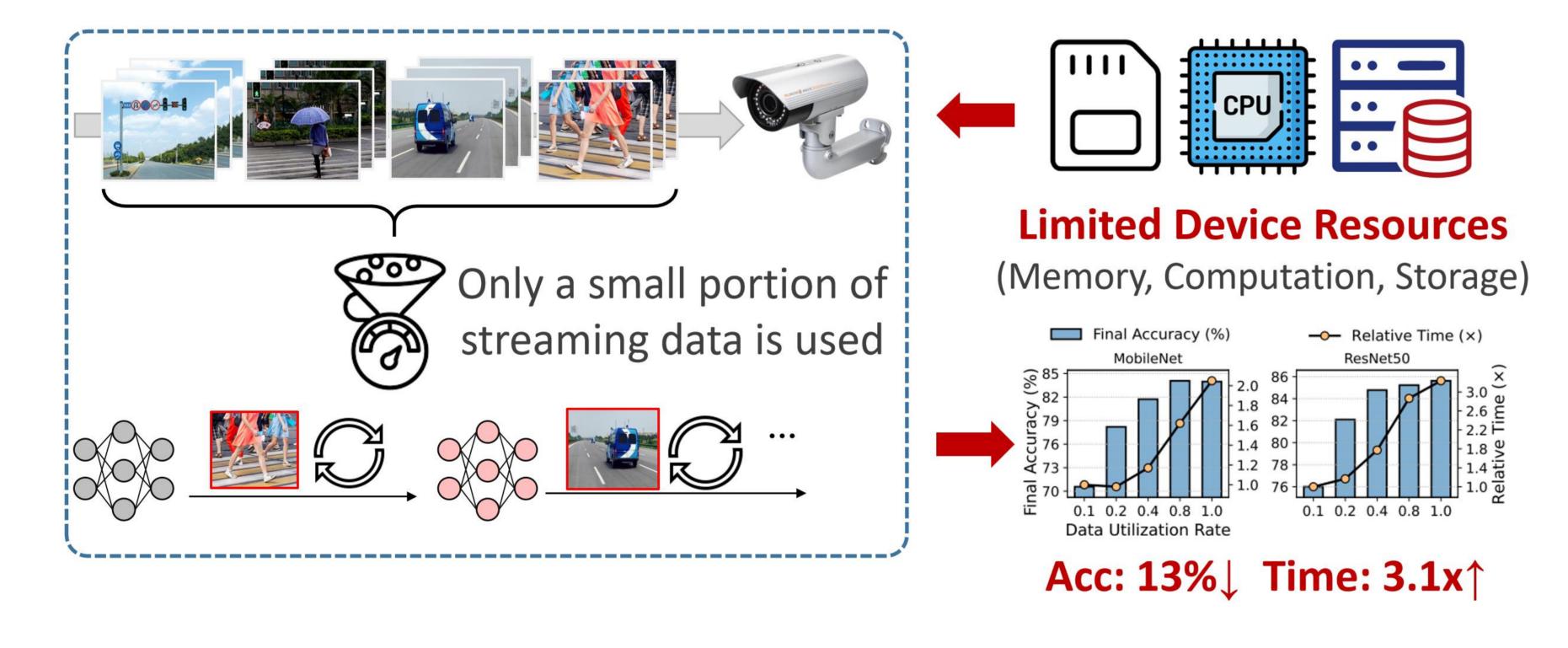
- ► Effectiveness: Provide both theoretical and empirical performance guarantees for data selection.
- ► Efficiency: Achieve low latency and resource contention.
- ► Trade-off: Higher effectiveness demands more accurate but costly evaluations on more data \rightarrow lower efficiency.

Solutions:

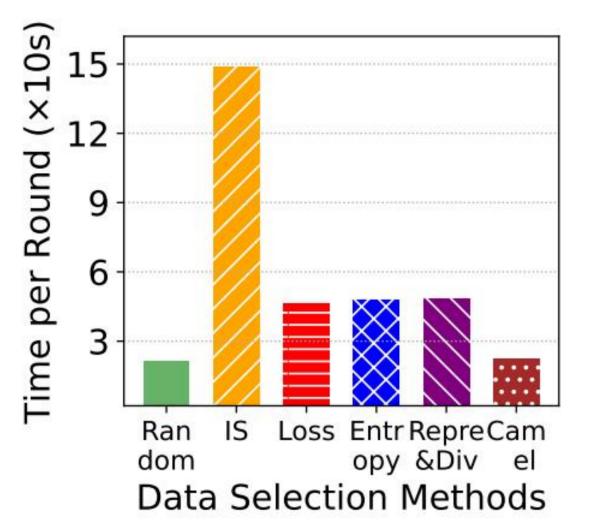
- ► Effectiveness: A theoretically optimal data selection algorithm to maximize training performance.
- ► Time-Efficiency: A coarse-grained filter to estimate each streaming data's importance in real time.
- ► Resource-Efficiency: A pipeline design to offload data selection to idle hardware resources.

Motivation

Data Bottleneck: On-device streaming data is significantly underutilized due to limited hardware resources.

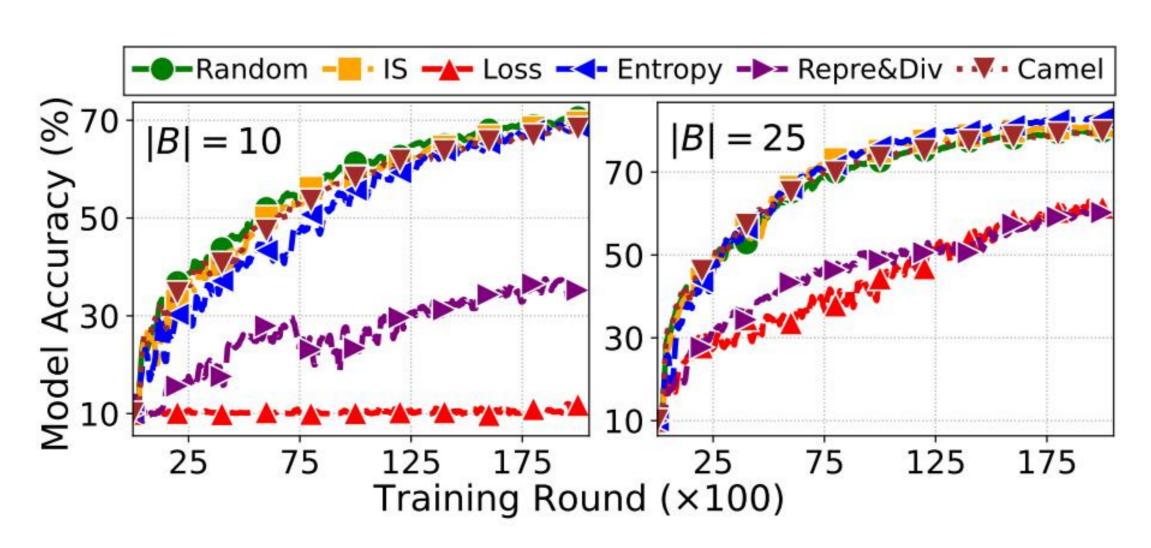


Limitations of Existing Works: Prior cloud-side data selection methods are not well-suited for on-device settings.



(a) Per-round training time.

High Evaluation Latency



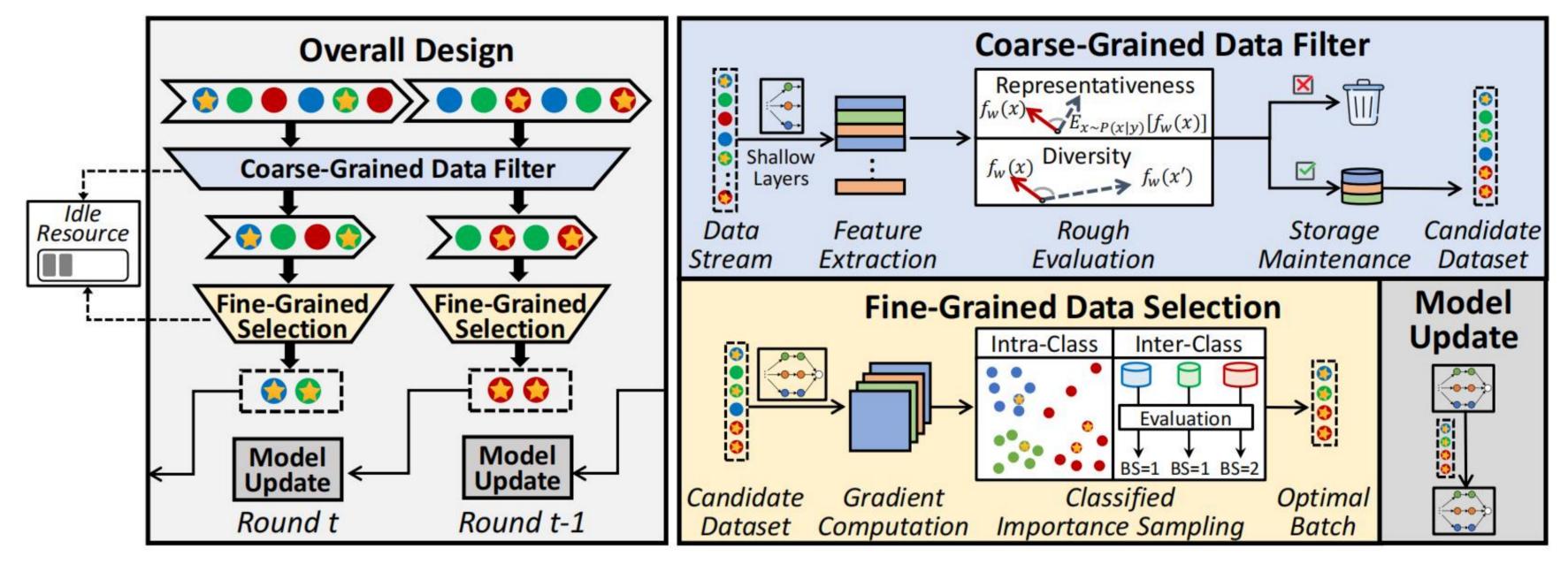
(b) Training processes with batch sizes 10 and 25.

Low Performance Gains w.r.t. random sampling

Design

Overview: During model taining, Titan uses idle resources to

- ► filter a small candidate dataset with high representativeness and diversity (coarse-grained filter),
- ▶ optimally determine *how many* and *which* samples to select for each data class (fine-grained selection),
- concurrently train model using previously selected data on the main hardware resource (pipeline design).



Theoretical Optimality:

- ► Theorem 1: Model training performance is inversely correlated with the gradient variance of selected data batch.
- ► Theorem 2: To minimize gradient variance, the optimal selection size $|B_v|$ for each class y and probability $P_v(x)$ for each sample *x* are:

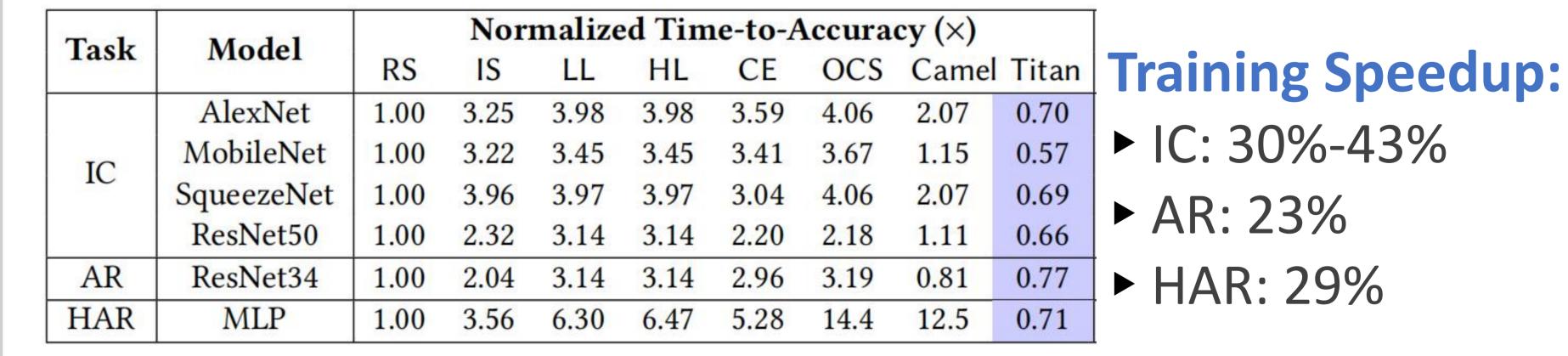
$$|B_{\mathcal{Y}}| \propto |\mathcal{S}_{y}| \Big[\mathbb{V}_{(x,y)\sim P_{t,y}} [\nabla l(w_{t}, x, y)] - \mathbb{V}_{(x,y)\sim P_{t,y}} [||\nabla l(w_{t}, x, y)||_{2}] \Big]^{\frac{1}{2}}$$

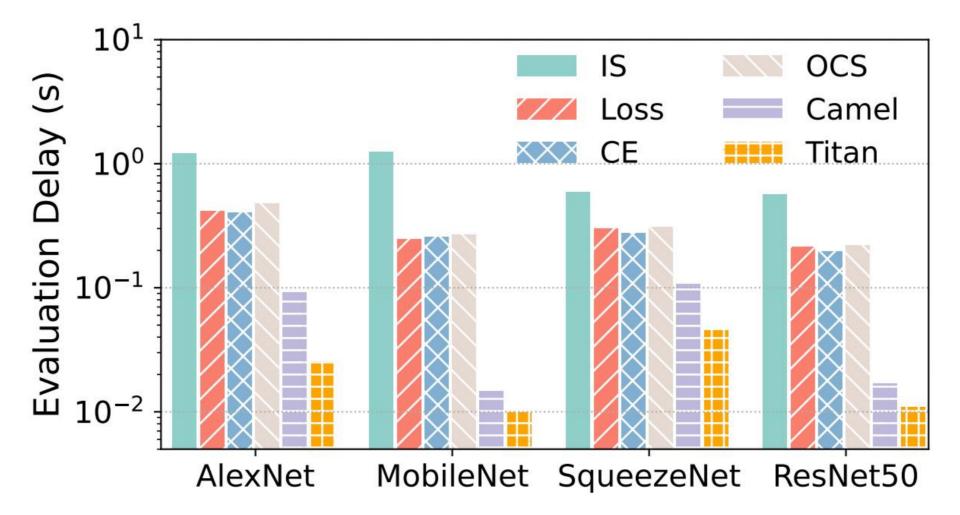
$$P_{\mathcal{Y}}(x) \propto I_{t}(x, y) \triangleq \|\nabla l(w_{t}, x, y)\|_{2}$$

Evaluation

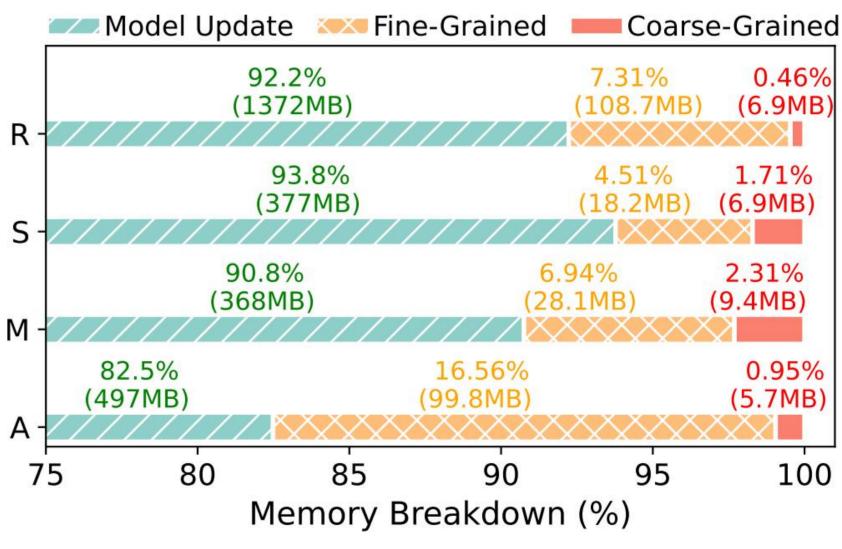
3 Tasks and Data Modalities:

Image Classification (IC), Audio Recognition (AR), Human Activity Recognition (HAR)





Evaluating Steaming Data in ms-level Latency



Marginal Memory Footprint (≤120MB)